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Preface

In this monograph we apply scattering theory methods to calculations in
quantum field theory, with a particular focus on properties of the quantum
vacuum. These methods will provide efficient and reliable solutions to a va-
riety of problems in quantum field theory. Our approach will also elucidate
in a concrete context many of the subtleties of quantum field theory, such
as divergences, regularization, and renormalization, by connecting them to
more familiar results in quantum mechanics.

We will use tools of scattering theory to characterize the spectrum of
energy eigenstates in a potential background, hence the term spectral methods.
This mode spectrum comprises both discrete bound states and a continuum
of scattering states. We develop a powerful formalism that parameterizes the
effects of the continuum by the density of states, which we compute from
scattering data. Summing the zero-point energies of these modes gives the
energy of the quantum vacuum, which is one of the central quantities we
study. Although the most commonly studied background potentials arise from
static soliton solutions to the classical equations of motion, these methods
are not limited to such cases.

A novel and central feature of this approach is its ability to make direct
contact between perturbative and non-perturbative treatments of quantum
field theory. Although we will study field configurations corresponding to
strong potentials that cannot be treated perturbatively, we will nonethe-
less be able to implement standard perturbative renormalization conditions
specified in terms of experimental inputs. Using these conventional renormal-
ization conditions allows us to make direct comparisons to the perturbative
sector of the quantum field theory and thus compute quantum effects for
non-perturbative field configurations in an accurate and unambiguous way.

The spectral method is exact to one-loop order because it sums all one-
loop Feynman diagrams with any number of insertions of the background
field. This property allows us to proceed where perturbation theory or the
derivative expansion would not be valid. For example, in a model with no
classical solitons we can demonstrate the existence of a non-topological soliton
stabilized at one-loop order by quantum fluctuations.

Our methods are also efficient for practical computations: The quantities
entering a numerical calculation are cutoff independent and do not involve
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differences of large numbers, so the algorithms are highly convergent. In gen-
eral the quantum fluctuations are described by coupled partial differential
equations. For technical reasons we are restricted to systems with sufficient
symmetry so that these equations of motion allow a partial wave decomposi-
tion. Fortunately, for physically interesting systems this is often the case.

The outline of the monograph is as follows: In the first chapter, we explain
the basic ideas intuitively, postponing the precise and rigorous derivations to
the following two chapters. In Chap. 2 we review the technical results from
scattering theory that we will need. In Chap. 3 we establish the central tech-
niques of the spectral method. On a first reading, one may want to skip the
technical details in Chap. 2 and 3 and proceed to the discussion of applica-
tions in the subsequent chapters.

In Chap. 4 we employ the spectral method to compute energies of the
quantum vacuum for configurations in one spatial dimension. We consider
both bosonic and fermionic quantum fields and combine these results in a
simple supersymmetric model. For a system with fermionic fluctuations, we
show that quantum contributions to the energy can stabilize classically un-
stable field configurations. In Chap. 5 we show how the spectral method is
able to count states as the vacuum is distorted by the background field. In
particular, it allows us to compute integer and fractional charges that are in-
duced by bosonic background fields coupled to charged fermions. Hedgehog
configurations play a major role in particle physics and the spectral method
is particularly well suited for their investigation. In Chap. 6 we discuss them
for two renormalizable models.

The spectral method provides an elegant means to disentangle divergences
that arise in quantum field theory calculations. This property is particularly
valuable for the famous Casimir effect because its study requires proper iden-
tification not only of ultraviolet divergences of quantum field theory but also
of divergences that originate from singular boundary conditions. We will ex-
plore these issues in Chap. 7 in our calculation of Casimir forces and stresses.
In Chap. 8 we return to particle physics models similar to those already
discussed in Chap. 6. However, this time we will explore string type con-
figurations that are translationally invariant in one spatial dimension, using
the formalism developed in Chap. 3 for this purpose. Finally, in Chap. 9 we
consider Q-balls as an example of quantum corrections for background fields
with simple time dependence.

The spectral method is an advanced technique in the theory of quantum
fields. We have tried to keep the exposition as simple and self-contained as
possible, given the restricted space of a lecture note. In particular, we have
added a non-technical introduction to the main aspects of the method and
devoted separate chapters to the more sophisticated formalism from scatter-
ing and quantum field theory. Overall, we anticipate that the volume can be
mastered with a profound knowledge of quantum mechanics alone, although
familiarity with the concepts of quantum field theory will be very useful. We
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expect that this monograph can be used profitably as a companion to the
more standard presentation of quantum field theory, since it provides explicit
examples of concepts such as dimensional regularization and gauge theory
anomalies in the context of ordinary quantum mechanics. It can thus serve
both as a textbook for graduate students with some background in quantum
field theory and as a summary report for researchers in the field. In particular,
we hope that this monograph spreads the appreciation of the many advan-
tages that spectral methods provide for the study of quantum field theories
and stimulates further developments of the subject.

Many people have helped us gaining this understanding of the spec-
tral method. In particular we gratefully acknowledge fruitful contributions
by and illuminating discussions with E. Farhi, R. L. Jaffe, V. Khemani,
and O. Schröder. This research has been supported by the United States
Department of Energy and National Science Foundation (N. G.), Research
Corporation (N. G.), and the Deutsche Forschungsgemeinschaft (M. Q. and
H. W.).

Middlebury, Tübingen, Siegen, October 2008 Noah Graham
Markus Quandt
Herbert Weigel
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1 Introduction

1.1 Background and Motivation

In quantum field theory, we often encounter field configurations with a
strongly localized energy or charge density. In many cases, these configu-
rations also solve the classical field equations and behave in many respects as
classical particles; such configurations are known as solitons [1, 2]. While it
is generally straightforward to compute the classical energy of such a config-
uration, the quantum correction to the classical energy is often essential to
complete the physical picture. For reasons that will soon become obvious, this
correction is commonly called the vacuum polarization energy. Vacuum polar-
ization energies have been investigated for soliton configurations ranging from
simple models in 1 + 1 dimensions [2, 3] to chiral models for baryons1 [5, 6]
and even to cosmic strings in the standard model [7, 8]. In all these cases
the quantum corrections to the classical energy may be substantial and may
thus drastically alter conclusions about the stability or other properties of
the field configuration.

This monograph introduces a comprehensive set of tools from scattering
theory for computing one-loop, i.e., O(�), quantum effects for a wide variety
of localized field configurations. Scattering theory provides all the necessary
information on the small-amplitude fluctuations about these configurations.
Since we will compute the spectra of these fluctuations within scattering
theory, we therefore call this approach the spectral method. Scattering theory
also allows us to employ tools such as Levinson’s theorem and the Born
approximation to handle the subtleties of regularization and renormalization
in quantum field theory.

In the next section we begin with a heuristic description of the spectral
method for a simple case, in anticipation of the rigorous derivations in later
chapters. In Chap. 2 we review aspects of scattering theory essential for our
method, and we incorporate them in the usual setting of quantum field theory
in Chap. 3. In subsequent chapters we introduce a number of applications,
which show the practicality, efficiency, and flexibility of our method. It does
have one limitation, however: We rely on a partial wave decomposition of
the scattering matrix, so that the computation is technically feasible only if

1 See Ref. [4] for a recent review on soliton models for baryons.
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2 1 Introduction

the problem exhibits sufficient symmetry to separate the scattering problem
into block-diagonal form. As a result, the systems to be considered usually
exhibit some form of rotational symmetry. Fortunately, most of the physical
systems of interest do indeed have such symmetries.

The spectral method sums all one-loop Feynman diagrams with any num-
ber of insertions of the background field. The method is thus exact to sub-
leading order of the � expansion. We will use a Born series representation
to isolate the divergent terms. The Born approximation need not be a good
approximation (it actually is a bad one), so we do not rely on its accuracy;
rather it is useful because any specific order of this series may be identified
with a limited number of Feynman diagrams. As we will show, this identifi-
cation renders our computations free of any cut-off that would be needed to
regularize the ultra-violet divergent loop integrals. This property drastically
reduces numerical errors and facilitates a direct implementation of the stan-
dard renormalization conditions of perturbative quantum field theory, which
removes ambiguities arising from finite renormalizations.

The methods that we discuss apply furthermore to the famous Casimir
effect [9–11], because it can be described in terms of the quantum energy
of an interacting field theory [12]. For that reason the vacuum polarization
energy is frequently called the Casimir energy. The Casimir problem is usually
posed as the response of a fluctuating quantum field to externally imposed
boundary conditions. In reality, however, no interaction is strong enough to
enforce a boundary condition on all frequencies of a fluctuating field. Rather,
the fluctuating field interacts with a smooth background that implements
the boundary condition in a certain, often singular limit. Hence the spectral
methods are perfectly suited to investigate the Casimir problem [13].

The spectral techniques we present provide a complete, self-contained ap-
proach to the calculation of one-loop quantum corrections, which reveals the
fundamental connections between quantum field theory and ordinary quan-
tum mechanics. The foundation of this approach was first formulated by
Schwinger [14], and it was applied to simple models by Dashen, Hasslacher,
and Neveu [3]. As we show in Chap. 3, our calculations using the spectral
method can be recast in the general form of a functional determinant arising
from the path integral representation of the field theory at order �. A num-
ber of other approaches have tackled similar problems in either an exact or
approximate way:

– Green’s function methods involving subtractions analogous to our Born
series approach have been used in [15–18]. In particular the calculations
of Refs. [17, 18] implement the full renormalization conditions and thus
are directly comparable to our approach.

– The heat kernel method, based on the proper time representation of the
determinant, can be used to provide long-wavelength approximations [19–
21], which work well for sufficiently smooth background configurations. It
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can also be used to form exact results [22–26], though this approach does
not allow for comparison to standard renormalization conditions.

– The world-line formalism [27–30] represents the determinant as a stochas-
tic ensemble of closed world lines. It is free of systematic errors and even
applicable in cases where there is not enough radial symmetry for the
spectral method to work. Unfortunately, the statistical errors of the Monte
Carlo procedure make high-precision simulations very time consuming.

– Generalized derivative expansions [31–33] can often be equivalent to our
approach when computed exactly. They are particularly well suited to
approximate calculations for slowly varying backgrounds [34–37].

– Functional determinant or partial wave cutoff methods [1, 38–40] express
path integral determinants in one space dimension in terms of the solution
to a differential equation, which is then used analogously to our scattering
data.

– Direct analysis of discrete spectra [41] provides a simple, general approach
for generic problems, but suffers from computational inefficiencies because
it directly subtracts cutoff-dependent quantities. Since the final result is
obtained as a difference of divergent quantities, very high precision must
be maintained in the calculation.

– Semiclassical approximations can be highly efficient in cases where these
approximations are justified. An example is the optical approach [42–44]
to the Casimir problem.

1.2 Invitation: A Sample Calculation

We begin by sketching the central elements of our approach in a toy model.
The actual derivations of these results are postponed until the subsequent
chapters, where we will develop the mathematical tools that will enable us
to implement these intuitive ideas in a general, rigorous, and efficient way.

1.2.1 Zero-Point Energies: Summing 1
2
�ω

Consider a scalar quantum field ϕ of mass m in one space dimension, with a
fixed, localized background potential σ(x). This system is described by the
Lagrangian density

L =
�

2

2
(∂μϕ)2 − 1

2
m2ϕ2 − 1

2
σ(x)ϕ2 . (1.1)

The potential σ(x) represents the effects of the ϕ field’s interactions with the
static background field. We would like to understand the energy associated
with the quantum fluctuations of ϕ in its vacuum state. Upon quantization,
each normal mode of oscillation ϕk(x) of ϕ is associated with a simple har-
monic oscillator, whose creation and annihilation operators increment and
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decrement the occupation number of that mode. The energy stored in that
mode is given by

Ek = �ωk

(
nk +

1
2

)
, (1.2)

where nk is the occupation number and �ωk is the energy of mode k. Thus
even in the vacuum state, when all nk are equal to zero, the system still has
a quantum energy that we may loosely write as the mode sum

E =
∑

k

1
2

�ωk . (1.3)

There are two serious problems with this expression:

1. It is not actually a sum. The normal modes of our system potentially
comprise both discrete bound states and a continuum of scattering states.
Although one could discretize the system by putting it in a box, our
approach will not take this direction, because we will rely on the powerful
tools of continuum scattering theory. Regardless of the approach we take,
however, it will be essential to carefully weight the sum and integral to
avoid over- or undercounting of states.

2. The sum is not finite. This problem is clear because the summand itself
approaches infinity. While the resolution of such divergences through reg-
ularization and renormalization is well understood in perturbative quan-
tum field theory, it will require considerable care to precisely implement
this standard procedure in a practical calculation. Our final result must
take as input physical parameters, such as masses, charges, and coupling
constants at fixed external momenta, and yield an unambiguous answer,
with no undetermined or ambiguous finite parts. In this procedure it will
be crucial to solve the previous problem of carefully enumerating the
spectrum of states, because the final answer after renormalization can be
of the same order of magnitude as the smallest energies in the sum.

To see how these problems interact, we consider the first step in the
solution to the second problem: Since only energy differences—not absolute
energies—are detectable, we will compute the change in the quantum energy
between the free and interacting cases,2

ΔE = E − E(0) =
∑

k

1
2

�ωk −
∑

k

1
2

�ω
(0)
k . (1.4)

Here we recognize the justification for the term vacuum polarization energy
introduced earlier:ΔE measures the energy change caused by the polarization
of the vacuum modes that stems from the interaction with the background
2 Of course, general relativity is sensitive to absolute energies. This subtraction

then represents the renormalization to zero of the cosmological constant, which
we will not attempt to justify.



1.2 Invitation: A Sample Calculation 5

potential. While the leading divergence cancels in the subtraction of Eq. (1.4),
the difference is still divergent even in our simple model. Furthermore, this
expression highlights the importance of a consistent enumeration of the spec-
trum of small oscillation modes: Neglecting even a single ωk or summing a
slightly different number of terms in the two sums would lead to a drastic
change in the final result.

1.2.2 From Discrete to Continuous: Phase Shifts
and the Density of States

Next we address the issue of counting of states. To simplify the problem, we
consider a potential σ(x) that is symmetric under x → −x. We also restrict
our attention to the antisymmetric small oscillation modes. The symmetric
case proceeds similarly, but it requires some additional technical details that
we describe in later sections. From here on, we work in units where � = 1.

The small oscillation wavefunctions ϕk(x) obey the relativistic Klein–
Gordon equation

(
− d2

dx2
+ σ(x)

)
ϕk(x) = k2ϕk(x), (1.5)

where ϕk(0) = 0 because we are in the antisymmetric channel and k2 =
ω2 −m2. We begin by considering scattering states, for which k2 > 0.

In the absence of any potential, the solution to this equation would sim-
ply be ϕ(0)

k (x) = sin kx. Far away, where the potential approaches zero, our
solution should approach this free solution, but it could be phase shifted:

ϕk(x) ≈ sin(kx+ δ(k)) for x large, (1.6)

where the phase shift δ(k) depends on k but not x. The phase shift contains
the essential information to our calculation. An attractive potential pulls the
wavefunction in, giving a positive δ(k), while a repulsive potential pushes it
out, giving a negative δ(k). The former case is illustrated in Fig. 1.1. Since it
is a phase, δ(k) is defined only modulo π. We fix this ambiguity by requiring
it to be a continuous function of k, vanishing as k →∞. (For more complex
cases we will encounter later, we will have to relax the second requirement.)

To understand how phase shifts are going to help us, we imagine placing
the system in a box by imposing the boundary condition ϕk(x) = 0 at x = L
for large L. The boundary condition yields a discrete spectrum of allowed val-
ues of k, since we must have sin(kL+δ(k)) = 0. We can imagine enumerating
these possibilities as

...
kn+1L+ δ(kn+1) = (n+ 1)π

knL+ δ(kn) = nπ
... (1.7)
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Fig. 1.1 An example of a free wavefunction ϕ
(0)
k (x), the full wavefunction ϕk(x),

and the corresponding potential σ(x)

We then subtract the lower line from the upper to obtain

(kn+1 − kn)L+ δ(kn+1)− δ(kn) = π . (1.8)

Since L is large, (kn+1−kn) must be small, because the rest of the terms in the
equation are small or of order one. Next we divide through by π(kn+1 − kn).
Since (kn+1−kn) is small, we may approximate the difference in phase shifts
by a derivative,

1
π

(
L+

dδ(k)
dk

)
=

1
kn+1 − kn

. (1.9)

The right-hand side is the inverse of the spacing between adjacent levels,
otherwise known as the density of states ρ(k).

To return to the continuum, we would like to send L → ∞. The density
of states is becoming infinite in this limit, since the spacing between adjacent
levels is going to zero. However, if we compare the density of states ρ(k) in
the presence of the potential to the free density of states ρ(0)(k) with no
potential, the difference is finite:

Δρ(k) = ρ(k)− ρ(0)(k) =
1
π

dδ(k)
dk

(1.10)

and it is always this quantity that will be important to our calculations. In
the next chapter we will rederive this result more rigorously, i.e., without
reference to artificial boundaries (see also Ref. [13]).

1.2.3 Counting States: Levinson’s Theorem

When comparing the free and interacting systems, it will be extremely im-
portant to maintain a consistent counting of the modes over which we sum.
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Any mismatch would lead to an error that would swamp the true result. In
particular, we would like to make sure that the number of modes we consider
is the same in both cases. In the continuum, this requirement is enforced by
Levinson’s theorem [45, 46], which tells us that

δ(0)− δ(∞) = nπ, (1.11)

where n is the number of bound states (discrete solutions with k2 < 0) that
have appeared in the interacting case. This result implies that

∫ ∞

0

Δρ(k) dk + n = 0 . (1.12)

In other words, any net change in the total number of states in the continuum
as we turn on the potential is balanced by the appearance of a corresponding
number of bound states. In some very special cases, examples of which we
will encounter in Chap. 4, bound states emerge at threshold with k = 0; such
states are “half-bound” and contribute to the total number of bound states
with weight 1/2.

1.2.4 Divergences: The Born Approximation

Having developed the tools for summing over the spectrum of quantum states,
we now turn to the calculation of interest. We can replace the difference of
sums in Eq. (1.4) by a sum over a finite number of bound states and an
integral over the continuum, which is weighted by the change in the density
of states between the interacting and free cases. Formally, we have

ΔE =
∑

j

1
2
ωj +

∫ ∞

0

1
2
ω

(
1
π

dδ

dk

)
dk , (1.13)

where ωj are the bound state energies and ω =
√
k2 +m2 gives the energy

of each continuum mode. As we have anticipated, this quantity is divergent:
The phase shifts for a localized potential typically go like 1/k at large k,
yielding a logarithmically divergent integral. This result reflects the standard
logarithmic divergences of a scalar field theory in one space dimension. (In
higher dimensions we will consider cases in which symmetry lets us decompose
the calculation into a sum over effective one-dimensional problems for each
partial wave. In that case, the individual channels will have the logarithmic
divergences of one dimension, but the sum over channels will introduce the
additional divergences associated with the higher space dimension.) Since
these divergences arise from the behavior of the integrand at large k, they are
entirely due to short-distance effects. The physical effects we are interested in,
however, should be associated with the length scales of the problem at hand,
such as the characteristic size of the potential or the Compton wavelength of
the ϕ particle. Thus, while the divergences dominate the calculation of the
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integral, they contain little information. Still, it is essential to handle these
divergences in a precise way: simply “canceling the infinities” in an arbitrary
way yields only a result that is accurate up to a finite constant; in other
words this result is meaningless.

The quantum field theory prescription for dealing with this situation is
well understood. First, one identifies the divergences, either with an explicit
cutoff or by introducing dimensional or Pauli–Villars regularization proce-
dures. Next, one introduces local counterterms to the “bare” Lagrangian
that modify existing parameters in the Lagrangian, such as mass, charge,
and the values of coupling constants at specific external momenta. Since Na-
ture provides only the values of these constants in the full theory, including
all quantum effects, the combination of the bare parameters and the coun-
terterms is what must be matched to experimental inputs. These quantities
are then held fixed as the regulator is removed through the process of renor-
malization. As a result, although the bare parameters and counterterms both
diverge, the theory is defined precisely in terms of experimentally accessible
data. Any other quantities we choose to calculate are then precise predictions
of the theory, with no room for ambiguities in “finite parts.”

In the case at hand, the counterterm is simply proportional to the po-
tential σ(x). Thus we must introduce a local counterterm cσ(x) in the La-
grangian. Its coefficient depends on the regulator in such a way that the coun-
terterm contribution to the energy, −c

∫∞
−∞ σ(x) dx, cancels the divergences

in the quantum calculation. In the standard “no-tadpole” renormalization
scheme, this counterterm exactly cancels the diagram with one external leg,
that is, one insertion of the background field σ(x). But it is simple to extract
the piece of the vacuum energy that is linear in the potential; it is just given
by the Born approximation

ΔE(1) =
1
2π

∫ ∞

0

ω
dδ(1)

dk
dk , (1.14)

where
δ(1)(k) = − 1

2k

∫ ∞

−∞
σ(x) sin2 kx dx . (1.15)

There are never any bound states in the Born approximation, so this con-
tribution to the energy arises entirely from the continuum. As written, it is
not manifestly proportional to

∫
dxσ(x). However, when we incorporate the

contribution from the symmetric channel, which is given by Eq. (1.15) with
sin2 kx −→ cos2 kx, we will obtain a result of the expected form.3

We stress that the Born approximation is unlikely to be a good approx-
imation to the exact phase shift in cases of interest to us, and in no way is
our calculation relying on its validity as an approximation. For us, the inter-
esting physical phenomena are likely to be encoded in the bound states and
3 However, the divergent piece of Eq. (1.15), which may be identified from the

large k behavior of δ(1)(k) by approximating sin2 kx → 1
2
, is of this local form.



1.2 Invitation: A Sample Calculation 9

0.0 0.5 1.0 1.5 2.0

k [arb. units]

–30

−20

−10

0

10

δ
[δ]1

[δ]2

Fig. 1.2 A typical example for the role of the Born approximation. Here [δ]n =

δ −∑n
m=1 δ(m) refers to the phase shift with the n first terms of the Born series

subtracted

low-energy scattering data, which correspond to physics at the characteristic
length scale of the potential. There, the Born approximation will differ signif-
icantly from the exact result. Indeed, as we will soon observe, the final result
is simply given by integrating over the error in the first Born approximation!
The Born approximation is accurate, however, for high energies and weak
potentials. It captures the uninteresting perturbative short-distance physics
that dominates the bare calculation but is canceled by the counterterms. In
Fig. 1.2 we show a typical example for the phase shift and its Born approxima-
tions. Obviously the Born approximation is very bad for small k. At large mo-
menta, however, it becomes accurate, so that integrals over Born-subtracted
phase shifts converge nicely. Figure 1.2 also shows the point made above: Any
term in the Born series has δ(n)(0) = 0 and thus there are no bound states
in the Born approximation, in accordance with Levinson’s theorem.

The final result for the renormalized quantum vacuum energy is then the
difference

ΔEren = ΔE−ΔE(1) =
1
2

∑
j

ωj +
1
2π

∫ ∞

0

ω
d

dk

(
δ(k)− δ(1)(k)

)
dk . (1.16)

Since the Born approximation becomes exact at large k, this subtraction im-
proves the convergence of the integral, so that the logarithmic divergence now
disappears and we have a finite result. In particular, there is no impediment
to integrating by parts, which, together with Levinson’s theorem, yields

ΔEren =
1
2

∑
j

(ωj −m)− 1
2π

∫ ∞

0

k

ω

(
δ(k)− δ(1)(k)

)
dk. (1.17)
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In this form, it is clear that the final result is proportional to the binding
energy of the bound states, and thus it varies smoothly if we change the
number of bound states by modifying the background potential. This expres-
sion is also significantly easier to work with computationally than Eq. (1.16),
since no numerical derivatives must be computed. In this form it is obviously
necessary to ensure that the phase shift is defined to be continuous and to
vanish as k →∞, without any mod π ambiguities.

It is important to note, however, that these manipulations are entirely for-
mal. Combining the divergent integrals in Eqs. (1.13) and (1.14) is ill-defined.
For example, we could obtain a different, but still finite, result by carrying out
a change of variables or integration by parts in one integral but not the other
before combining them. As demonstrated in Ref. [47], integrating the un-
regulated integral by parts introduces such finite ambiguities, corresponding
physically to the difference between holding the number of modes fixed and
holding the energy cutoff fixed when subtracting the divergent sums. Such
ambiguities are intolerable in a treatment that is to make predictive state-
ments about physical systems, such as the stability of solitons or the energy
density in the vacuum. In subsequent sections we will justify this subtrac-
tion procedure by regulating both expressions consistently using dimensional
regularization. We will then combine the finite, regularized expressions in an
unambiguous way before taking the limit in which the regulator is removed.

As a check, we note that if we included the analogous calculation with
the symmetric channel as well, the total quantity to be subtracted would be

ΔE(1) =
1
2π

∫ ∞

0

ω

(
dδ(1)

dk
+
dδ

(1)
S

dk

)
dk, (1.18)

where the Born approximation to the symmetric channel phase shift is

δ
(1)
S (k) = − 1

2k

∫ ∞

−∞
σ(x) cos2 kx dx, (1.19)

giving a total contribution to the energy of

ΔE(1) = − 1
4π

∫ ∞

0

dk
ω

k

∫ ∞

−∞
σ(x) dx, (1.20)

which is indeed just a (divergent) constant times
∫∞
−∞ σ(x) dx. Hence this

divergent contribution to the energy can indeed be absorbed by a local coun-
terterm in the Lagrangian. Furthermore, we can adjust this counterterm such
that expansion of the vacuum polarization energy has no contribution linear
in σ(x) but starts at quadratic order. In field theory, this choice parallels
the requirement that the tadpole graph, the diagram with a loop in ϕ and
one insertion of the background field, is zero. Therefore, it is often called the
no-tadpole renormalization scheme. If we imagine that σ(x) is determined by
dynamics not captured by our model, the no-tadpole scheme implies that to
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leading order this result is unchanged by the quantum fluctuations ϕ. Loosely
speaking, we state that the quantum fluctuations do not alter the vacuum
expectation value (VEV) of σ(x) in the no-tadpole scheme.

1.2.5 Computational Techniques

One of the strengths of this technique lies in its ability to precisely express the
difference between divergent quantities in a physically tractable way. Without
this simplification, sophisticated numerical algorithms are needed to carry out
the intermediate computations with extremely high accuracy even in simple
cases [41], because the subtraction procedure leads to a substantial loss of
precision. For our approach to be practical, however, we must be able to
compute phase shifts and their Born approximations efficiently.

To do so, we will employ the generalizations of the variable phase
method [48]. Continuing with our special case of the antisymmetric chan-
nel in one dimension, we write the scattering solution in terms of the phase
shift δ(k) and an unknown complex function βk(x) in the form

ϕk(x) =
1
2i

(
eikxeiδ(k)eiβk(x) − e−ikxe−iδ(k)e−iβ∗

k(x)
)
, (1.21)

where βk(x) obeys the nonlinear differential equation

− iβ′′
k (x) + 2kβ′

k(x) + (β′
k(x))2 + σ(x) = 0 . (1.22)

Comparing Eq. (1.21) to Eq. (1.6), we obtain the boundary condition that
βk(x) and β′

k(x) vanish as x→∞. We note that if the potential is zero, then
the phase shift vanishes and βk(x) = 0 for all x. Essentially, we have “factored
out” the free solution. The boundary condition ϕ(0) = 0 then implies that

δ(k) = −Reβk(0) . (1.23)

This approach automatically yields a phase shift that is continuous in k
and vanishing as k →∞, so it resolves all mod π ambiguities. Furthermore,
iteration of Eq. (1.22) yields an efficient way to compute Born approximations
to the phase shift: We simply integrate the differential equations in powers
of the potential σ(x), to obtain

− iβ(1)
k

′′(x) + 2kβ(1)
k

′(x) + σ(x) = 0
−iβ(2)

k
′′(x) + 2kβ(2)

k
′(x) + (β(1)

k
′(x))2 = 0

... (1.24)

with all the β(i)
k (x) and β(i)′

k (x) vanishing as x→∞. Then we have
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δ(1)(k) = −Reβ(1)
k (0)

δ(2)(k) = −Reβ(2)
k (0)

... (1.25)

In the numerical integration routine, all required orders of βk may be assem-
bled into one vector, so that all the required orders of the Born approximation
are computed simultaneously with a single pass. The result is a system of cou-
pled linear differential equations with sources for the β(i). The potential σ(x)
acts as the source for β(1). For the higher β(i), the source is calculated from
all the β(j)(x) with j < i.
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2 Review of Scattering Theory

As we have seen in the introduction, the tools of scattering theory—phase
shifts, bound states, and the Born approximation—are central to our calcu-
lational techniques. In this chapter, we develop these tools and derive the key
results we will need. We focus particularly on the use of the analytic structure
of the scattering data to efficiently compute the Green and Jost functions.

For those readers who are more interested in field theory applications,
much of the technical discussion in this chapter can be skipped on a first
reading. More comprehensive discussion of these subjects can be found in
standard references on scattering theory, such as [1, 2].

2.1 Scattering Theory in Arbitrary Dimension

Our ultimate goal is to apply scattering theory to calculations in quantum
field theory. Because we will cut off the divergences of quantum field theory
using dimensional regularization, it will be important to us to be able to carry
out scattering theory calculations in arbitrary dimensions with generalized
spherical symmetry. Our starting point is the time-independent Schrödinger
equation for the wavefunction with energy ω = ±

√
k2 +m2 in partial wave

� of a radially symmetric potential in n space dimensions,

− ψ′′ +
1
r2

(
α− 1

2

)(
α+

1
2

)
ψ + σ(r)ψ − k2ψ = 0 , (2.1)

where
α = �− 1 +

n

2
.

To set up a regular scattering problem, we assume that the background po-
tential σ is sufficiently localized, so that∫ ∞

0

rσ(r)dr <∞ . (2.2)

Asymptotically, the scattered particles become free, and their behavior as
r →∞ should be compared to the free outgoing spherical wave1

1 Whenever a fractional power of k appears it should be considered as the limit
Im k ↘ 0.
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w�(kr) = (−1)α+1

√
π

2
kr [Jα(kr) + iYα(kr)] , (2.3)

where Jα and Yα are the Bessel functions of first and second kind, respec-
tively [3]. Next we define various solutions to Eq. (2.1) that only differ in the
boundary conditions that they obey:

– The Jost solution, f�(k, r). It behaves like an outgoing wave at r → ∞,
with

lim
r→∞

f�(k, r)
w�(kr)

= 1 . (2.4)

For k �= 0 the two solutions f�(±k, r) are linearly independent because
their Wronskian is non-zero.

– The regular solution, φ�(k, r). It is defined by its k-independent behavior

lim
r→0

Γ (α+ 1)√
π

( r
2

)−(α+ 1
2 )

φ�(k, r) = 1 , (2.5)

which determines this solution uniquely. The k-independence implies that
φ�(k, r) is an even function of k (since the Schrödinger equation is) and
holomorphic in k for all radii r. By completeness, φ� can be represented
as a linear combination of the two Jost solutions,

φ�(k, r) =
i

2

[
k−α− 1

2F�(k)f�(−k, r) + (−k)−α− 1
2F�(−k)f�(k, r)

]
. (2.6)

When evaluating fractional exponents in Eq. (2.6), k and −k must be
connected by paths in the upper-half k-plane (see property (1) below) [2].
The coefficient function is called the Jost function; it can be computed
from the Wronskian of φ� and f�. Alternatively, it can also be read off
from the asymptotic behavior of the Jost solution f�(k, r) near the origin,

F�(k) = lim
r→0

f�(k, r)
w�(kr)

. (2.7)

– The physical scattering solution, ψ�(k, r). It is also regular at the origin
and thus proportional to φ�(k, r), but differently normalized:

ψ�(k, r) =
kα+ 1

2

F�(k)
φ�(k, r) . (2.8)

The reason for distinguishing two regular solutions is that φ� has a simple
boundary condition at r = 0, while ψ� has a physical boundary condition
at r →∞: For k > 0, the representation

2 The symmetric channel in one spatial dimension is different and must be dis-
cussed separately.

near the origin2
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ψ�(k, r) =
i

2

[
f�(−k, r) + e−(α+ 1

2 )π F�(−k)
F�(k)

f�(k, r)
]

(2.9)

combined with Eq. (2.4) implies that ψ� has an asymptotic description
in terms of incoming and outgoing spherical waves. The prefactor of the
outgoing wave is the scattering matrix

S�(k) ≡
F�(−k)
F�(k)

. (2.10)

From F�(−k∗) = F ∗
� (k), we conclude that S�(k) must be a pure phase

when k becomes real, and the phase shift δ�(k) = 1
2i lnS�(k) is thus iden-

tified with the (negative) phase of the Jost function

F�(k) = |F�(k)| exp [−iδ�(k)] for k ∈ R . (2.11)

We list the most important analytic properties of the scattering solutions
without proof. For more details the interested reader is referred to the liter-
ature [1, 2].

The regular and Jost solutions are bound by

|φ�(k, r)| < C

(
r

1 + |k|r

)α+ 1
2

er |Im k|,

|f�(k, r)| < K

(
r

1 + |k|r

)−α+ 1
2

e−rImk . (2.12)

The positive constants C and K are independent of k and r. In particular,
the regular solution is an entire function of k for all r, and the Jost solution
is holomorphic in the upper complex k-plane, where Im k > 0. For our ap-
proach, the most important quantity is the Jost function F�(k), which has
the following properties [1, 2]:

1. the Jost function is holomorphic in the upper complex k-plane, where
Im k > 0;

2. the Jost function is symmetric under complex conjugation, F�(−k∗) =
F ∗

� (k) ;
3. the Jost function approaches unity as |k| → ∞ everywhere in the up-

per complex k-plane. In particular, this implies lim
k→∞

δ�(k) = 0 when

Im k ↘ 0;
4. the roots of the Jost function in the upper complex k-plane are simple and

located on the imaginary axis, kj = iκi with κj ∈ R. They correspond to

the bound state energies ωj =
√
m2 − κ2

j in the Schrödinger Eq. (2.1).
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2.2 Green’s Functions from Scattering Data

We now apply the technical machinery sketched in the last section to find
efficient computation methods for the scattering data that enter the phase
shift approach to quantum field theory. We begin with the Green’s function,
which is most commonly written in terms of the physical solution as

G�(r, r′; k) = − 2
π

∫ ∞

0

dq
ψ∗

� (q, r)ψ�(q, r′)
(k + iε)2 − q2 −

∑
j

ψ�,j(r)ψ�,j(r′)
k2 + κ2

j

. (2.13)

The iε prescription has been chosen such that the Green’s function is mero-
morphic in the upper complex k-plane with simple poles at the bound state
momenta k = iκj . However, the Green’s function can also be rewritten as

G�(r, r′, k) =
φ�(k, r<)f�(k, r>)

F�(k)
(−k)α− 1

2 , (2.14)

where r< (r>) is the smaller (larger) of the arguments r and r′, respec-
tively. This expression has its (simple) poles precisely at the zeros of the
Jost function, which are the imaginary bound state momenta. Thus both
representations, Eqs. (2.13) and (2.14), have the same analytic structure in
the upper complex k-plane, the same asymptotics as |k| → ∞, and they
both solve the same inhomogeneous differential equation, so they must be
identical.

The form (2.14) is not yet suited for an efficient numerical evaluation.
Although G� is analytic in the upper half-plane, f� and φ� contain pieces that
oscillate for real k and exponentially decrease and increase, respectively, in the
upper complex k-plane. We will eventually be interested in the case r = r′,
whence the exponential factors in the product f� · φ� cancel. Numerically,
however, such a cancellation of large numbers is unstable and involves a
substantial loss of precision. A better strategy is to factor out the dangerous
exponential components with the following ansatz,3

f�(k, r) ≡ w�(kr)g�(k, r)

φ�(k, r) ≡
(−k)−α+ 1

2

2α
h�(k, r)
w�(kr)

, (2.15)

where w�(kr) is the free Jost solution introduced above. Notice that g�(k, r)
is the ratio of the interacting and free Jost solution. In view of (2.7), we have
the smooth limit

lim
r→0

g�(k, r) = F�(k) . (2.16)

3 For n = 1 and n = 2, the s-wave channel � = 0 is somewhat different and requires
special treatment.
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With these definitions,

G�(r, r, k) =
h�(k, r) g�(k, r)

2α g�(k, 0)
. (2.17)

The two functions g� and h� are holomorphic in the upper complex k-plane
and, most importantly, they are bounded according to

|g�(k, r)| ≤ const. ,

|h�(k, r)| ≤ const.
2αr

1 + |k|r , (2.18)

so that neither g� nor h� grow exponentially during the numerical integra-
tion. Thus the representation of the partial wave Green’s function in terms
of g� and h� is numerically tractable on the positive imaginary axis. After
analytically continuing to k = it, the function g�(it, r) obeys

g′′� (it, r) = 2t ξ�(tr) g′�(it, r) + σ(r)g�(it, r) , (2.19)

with the boundary conditions

lim
r→∞ g�(it, r) = 1 and lim

r→∞ g′�(it, r) = 0 . (2.20)

Here the prime indicates a derivative with respect to the radial coordinate r.
Using these boundary conditions, the differential equation is integrated nu-
merically for g�(it, r), starting at r =∞ and proceeding to r = 0. For real τ ,
the function

ξ�(τ) ≡ −
d

dτ
ln [w�(iτ)] (2.21)

entering the differential equation is real with lim
τ→∞ ξ�(τ) = 1, so that g�(it, r)

(and also h�(it, r) that will appear below) are manifestly real. The key ingre-
dient for the computation of quantum corrections is the function

ν�(t) ≡ lim
r→0

g�(it, r) . (2.22)

The second function h�(it, r) obeys a similar equation

h′′� (it, r) = −2t ξ�(tr)h′�(it, r) +
[
σ(r)− 2t2

dξ�(τ)
dτ

∣∣∣∣
τ=tr

]
h�(it, r) , (2.23)

with the boundary conditions

h�(it, 0) = 0 and h′�(it, 0) = 1 . (2.24)

This system of equations for h�(it, r) has to be integrated numerically from
r = 0 to r =∞.

Our field theory applications will require us to compute these quanti-
ties both exactly and approximately as a Born expansion in powers of the
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potential. Fortunately, the computation of the Born approximations is also
straightforward in this formalism. We expand the solutions to the differential
Eqs.(2.19) and (2.23) about the free solutions,

g�(it, r) = 1 + g
(1)
� (it, r) + g

(2)
� (it, r) + · · · , (2.25)

h�(it, r) = 2αrIα(tr)Kα(tr) + h
(1)
� (it, r) + h

(2)
� (it, r) + · · · , (2.26)

where the superscript labels the order of the background potential σ(r) and
Iα(z) and Kα(z) are modified Bessel functions. Higher order approximations
obey inhomogeneous linear differential equations with the boundary condi-
tions

lim
r→∞ g

(j)
� (it, r) = 0 and lim

r→∞ g
(j)′
� (it, r) = 0, (2.27)

h
(j)
� (it, 0) = 0 and h

(j)′
� (it, 0) = 0 . (2.28)

In these equations σ is the source term for g(1), σg(1) is the source term
for g(2), and so on. We thus obtain a coupled system of linear differential
equations, which can be solved in a single numerical integration pass.

The differential equation system (2.19), (2.23), and its Born iterations
are the central calculations needed to obtain the Green’s function Eq. (2.13),
which enters the energy density, and the Jost function Eq. (2.22), which
enters the total energy. For computations on the real k-axis, these formulae
can be rotated back to yield the variable phase approach discussed in the
introduction.

2.3 Phase Shifts and Density of States

A central quantity that we will use in our investigations is the density of
states. For a system with a discrete spectrum, the density of states in partial
wave � would be

ρ�(k) =
∑

n

δ(k − k�,n) , (2.29)

where k�,n are the wave numbers of the discrete solutions and the right-hand
side is a sum of Dirac delta functions. To convert this result to an expression
suitable for analysis in the continuum, we rewrite it as

ρ�(k) = lim
ε→0

∑
n

1
π

Im
1

k − kn − iε
. (2.30)

Using Eq. (2.13), we have the density of scattering states

ρ�(k) =
2k
π

Im

∫ ∞

0

dr G�(r, r, k) , (2.31)
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which is valid only as a formal expression, since it contains singularities as
the arguments of the Green’s function coincide. As expected from Eq. (1.9),
ρ� is proportional to the volume, which is infinite in the continuum limit.
However, the difference between the density of states in the interacting and
the free theories,

ρ�(k)− ρ(0)
� (k) =

2k
π

Im

∫ ∞

0

dr (G�(r, r, k)−G(0)
� (r, r, k)) , (2.32)

remains finite in the continuum limit. Here G(0) represents the free Green’s
function. To make the integral on the right-hand side well defined, we require
a particular prescription, which we will now explain. In doing so, we moreover
relate the density of states to scattering results we have derived above. In
particular, we demonstrate a key relation between the integral over space of
the Green’s function and the Jost function,

2k
i

∫ ∞

0

dr
[
G�(r, r, k)−G(0)

� (r, r, k)
]

= i
d

dk
lnF�(k) , (2.33)

which is valid everywhere in the upper half-plane Im k > 0, where the spatial
integral is indeed well defined.

We start by differentiating the Wronskian of the Jost solution, f�(k, r),
and the regular solution, φ�(k′, r) [4],

d

dr
W [f�(k, r), φ�(k′, r)] =

(
k2 − k′2

)
f�(k, r)φ�(k′, r), (2.34)

where all quantities in this relation are analytic for Im k > 0. We integrate
both sides from r = 0 to r = R. Since the regular solution φ�(k, r) becomes
k-independent at small r, we can compute the boundary term at r = 0 by
replacing k′ with k and using the standard Wronskian,

W [f�(k, r), φ�(k, r)] = (−k)
1
2−α

F�(k) , (2.35)

giving

W [f�(k,R), φ�(k′, R)] = (−k)
1
2−α

F�(k) +
(
k2 − k′2

) ∫ R

0

dr f�(k, r)φ�(k′, r) .

(2.36)
Next we differentiate with respect to k, set k′ = k, and use the representation
(2.14) for the Green’s function to obtain

(−k)α− 1
2

F�(k)
W
[
ḟ�(k,R), φ�(k,R)

]
=
α− 1

2

k
+
Ḟ�(k)
F�(k)

+ 2k
∫ R

0

dr G�(r, r, k) ,

(2.37)
where ḟ�(k,R) ≡ d

dkf�(k,R) and Ḟ�(k) ≡ d
dkF�(k). To eliminate the first term

on the right-hand side, we subtract the same equation for the non-interacting
case, giving
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(−k)α− 1
2

F�(k)
W
[
ḟ�(k,R), φ�(k,R)

]
− (−k)α− 1

2 W
[
ḟ

(0)
� (k,R), φ(0)

� (k,R)
]

=
Ḟ�(k)
F�(k)

+ 2k
∫ R

0

dr
[
G�(r, r, k)−G(0)

� (r, r, k)
]
. (2.38)

To complete the proof of Eq. (2.33), we have to show that the left-hand side of
Eq. (2.38) vanishes as R→∞. To see this, we write the boundary condition
(2.4) for the Jost solution in the form

f�(k,R) = w�(kR)
[
1 + O(R−1)

]
, R→∞, (2.39)

which can also be inferred from the integral equation obeyed by f�(k, r).
Differentiating with respect to k and using the asymptotics of the free Jost
solution w�(kR),

ẇ�(kR) =
d

dk
w�(kR) = iR w�(kR)

[
1 + O(R−2)

]
,

it is easy to show the asymptotic behavior

ḟ�(k,R) = iR f�(k,R)
[
1 + O(R−2)

]
. (2.40)

The first term on the left-hand side of Eq. (2.38) can thus be estimated by

(−k)α− 1
2

F�(k)
W [ḟ�(k,R), φ�(k,R)] =

i
(−k)α− 1

2

F�(k)
{RW [f�(k,R), φ�(k,R)]− f�(k,R)φ�(k,R)}

[
1 + O(R−2)

]

= −i [R+G�(R,R, k)]
[
1 + O(R−2)

]
, (2.41)

where we have used the Wronskian of f� and φ� and the definition of the
Green’s function, Eq. (2.14). Subtracting the analogous equation in the free
case, the term proportional to R drops out and we are left with

(−k)α− 1
2

F�(k)
W
[
ḟ�(k,R), φ�(k,R)

]
− (−k)α− 1

2 W
[
ḟ

(0)
� (k,R), φ(0)

� (k,R)
]

= −i
[
G�(R,R, k)−G(0)

� (R,R, k)
] [

1 + O(R−1)
]
. (2.42)

We estimate the large-R behavior of the difference Δ�(k,R) ≡ G�(R,R, k)−
G

(0)
� (R,R, k) from Eqs. (2.42) and (2.38),

− iΔ�(k,R) [1 + O(R−1)] =
Ḟ�(k)
F�(k)

+ 2k
∫ R

0

drΔ�(k, r) . (2.43)

From the bounds Eq. (2.12) we infer that the left-hand side of Eq. (2.43)
is finite for any R. Thus the integral on the right-hand side must be finite,
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which in particular enforces Δ�(k,R)→ 0 in the limit R→∞ with Imk > 0.
This completes the proof of Eq. (2.33).

We can extract further information from the above integral equation. At
large R, the leading order solution isΔ�(k,R) ∝ exp(2ikR). This suggests the
product ansatz Δ�(k,R) = Δ̃�(k,R) exp(2ikR). The integral equation and
the bounds, Eq. (2.12), enforce Δ̃�(k,R) to be a rational function; it cannot
be an exponential. In particular on the real axis Δ̃�(k,R) must be bounded, so
that limR→∞ Δ̃�(k,R) = C�(k), where C�(k) is an R-independent integration
constant. Therefore, we find for k ∈ R,

Ḟ�(k)

F�(k)
+ 2k

∫ R

0
dr
[
G�(r, r, k) − G

(0)
� (r, r, k)

]
= C�(k) exp(2ikR)

[
1 + O(R−1)

]
,

(2.44)

which oscillates as R → ∞. As is typical for continuum problems, we must
specify that the limit where k becomes real is taken after computing the spa-
tial integral to eliminate the contribution from these oscillations at the upper
limit of integration. Finally we relate the Jost function to the phase shift by
Eq. (2.11). Taking the imaginary part of Eq. (2.33) and using Eq. (2.30)
yields the relationship between the density of states and the phase shift,

1
π

dδ�
dk

=
2k
π

Im

∫ ∞

0

(
G�(r, r, k + iε)−G(0)

� (r, r, k + iε)
)
dr = ρ�(k)− ρ(0)

� (k) .

(2.45)
We can also rewrite Eq. (2.45) as

2
π

∫ ∞

0

dr
(
ψ∗

� (k, r)ψ�(k, r)− ψ(0)
�

∗(k, r)ψ(0)
� (k, r)

)
=

1
π

dδ�
dk

. (2.46)

As argued above, the momentum on the left-hand side is understood to be
defined with the iε prescription necessary to keep the spatial integral well
defined.

2.4 Levinson’s Theorem and Finite Energy Sum Rules

The renormalization program we will carry out in the next chapter will require
a set of sum rules relating bound state and scattering data, which include and
generalize Levinson’s theorem, Eq. (1.11). In their basic form, they were first
derived by Puff [5] and they were later re-analyzed and extended in Ref. [6].
Here, we present a derivation of these formulae, including the special case of
the symmetric channel in n = 1 space dimensions.

The sum rules are statements about the spectrum of the Schrödinger op-
erator in potential scattering theory. They relate information from the con-
tinuous part of the spectrum—the phase shifts—to the bound state energies:∫ ∞

0

dk

π
k2p d

dk
[δ�(k)]q +

∑
j

(−κ2
�,j)

p = 0 . (2.47)
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Here, � is the angular momentum channel and p, q ∈ N are non-negative
integers with q ≥ p. The brackets denote the q-times Born subtracted phase
shift,

[δ�(k)]q = δ�(k)−
q∑

i=1

δ
(i)
� (k) . (2.48)

The roots of the Jost function F�(k) are located on the imaginary axis at
k = iκ�,j (j = 1, 2, . . .); they correspond to bound states with energies ω�,j =
(m2 − κ2

�,j)
1
2 .

The sum rules in Eq. (2.47) hold in any number of space dimensions n,
as long as the scattering wavefunction vanishes at r = 0. The only excep-
tion is the symmetric channel in n = 1, where instead the derivative of the
wavefunction vanishes at the origin. This change has a profound impact on
the analytic structure of scattering data, which underlies the sum rules. We
will discuss the subtleties of the symmetric channel in Sect. 2.4.3 below.

2.4.1 Overview and Simplified Derivation

To understand the origin of the sum rules, consider first the case p = q = 0,
which is Levinson’s theorem. Our starting point is the integral

I� =
∫ ∞

−∞
dk

Ḟ�(k)
F�(k)

, (2.49)

where F�(k) is the Jost function introduced in Eq. (2.7) via the Jost solution
f�(k, r). From the Schrödinger equation obeyed by f�(k, r) and its complex
conjugate, it is easily seen that F�(−k) = F ∗

� (k) for real k. If we write

F�(k) = |F�(k)| e−iδ�(k) ,

it immediately follows that the modulus |F�| is an even function of real k,
while the phase shift δ�(k) is odd. The integral in Eq. (2.49) thus becomes

I� = (−2i)
∫ ∞

0

dk
dδ�(k)
dk

.

On the other hand, we can also evaluate I� by contour integration in the
upper complex k-plane. The integration range on the real axis is closed by a
large circle in the upper complex k-plane, as shown in Fig. 2.1. Since F� has
simple roots at the bound state momenta k = iκ�,j on the imaginary axis,
the function Ḟ�(k)/F�(k) has simple poles with unit residue at the bound
states, with no other singularities in the upper complex k-plane. In addition,
F�(k) goes to unity at large |k|, so Ḟ�(k)/F�(k) falls off as |k|−2 in the upper
complex plane, and the semi-circle at infinity in Fig. 2.1 does not contribute.
By Cauchy’s theorem,
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iκ1

iκ2

iκ3

iκ4

iκ5

Re k0

Im k

C C

Fig. 2.1 The integration contour for Levinson’s theorem and its generalizations

I� = 2πi Res
{
Ḟ�(k)/F�(k) ; Im k > 0

}
= 2πi

∑
j(�)

1 ,

where j(�) runs over the bound states in the �th partial wave. Combining the
two expressions for I� gives Levinson’s theorem

∫ ∞

0

dk

π

dδ�(k)
dk

+
∑
j(�)

1 = 0 , (2.50)

or equivalently, δ(∞)− δ(0) = πn�, where n� is the number of bound states
in channel �.

It is clear that this derivation can be generalized: We could consider a
starting integral with the function Ḟ�/F� replaced by u(k) Ḟ�(k)/F�(k), where
u(k) is any even function of k that is holomorphic in the upper complex plane.
The only tricky point is to ensure that the semi-circle at infinity does not
contribute; if this is the case, the general sum rule follows immediately,

∫ ∞

0

dk

π
u(k)

d

dk
[δ�(k)] +

∑
j(�)

u(iκ�,j) = 0 . (2.51)

The key point in the derivation of Eq. (2.47) is thus to compensate for the
rise of u(k) = k2p by subtracting enough Born approximations from the
Jost function or phase shifts, which improves the convergence at large |k|. In
general, q ≥ p subtractions are required. The proof must also ensure that the
Born subtractions do not interfere with the analytic structure of Ḟ�(k)/F�(k).

2.4.2 Proof of the Regular Sum Rules

To simplify the notation, we shall present the complete proof of the sum
rules Eq. (2.47) for the antisymmetric channel in n = 1 and drop the channel
index �. In higher space dimensions n, the method of proof is unchanged;
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some of the exponentials in the integral equations below must be replaced by
Bessel functions and the corresponding bounds on the solution are slightly
more complicated. Other than that, the generalization to all regular channels
is straightforward.

We begin by parameterizing the Jost solution to the Schrödinger Eq. (2.1)
in n = 1,

f(k, r) = exp (ikr + iβ(k, r)) . (2.52)

The free Jost solutions are just plane waves eikr and the Jost function is
F (k) = f(k, 0). Up to a factor of −i, the complex exponent β(k, r) thus agrees
with the logarithm of the Jost function. We already argued that F (−k) =
F ∗(k) for real k. As a consequence, the (negative) phase of the Jost function—
otherwise known as the phase shift—can be written as

δ(k) =
1
2i

[lnF (−k)− lnF (k)] = −Reβ(k, 0) . (2.53)

To compute β(k, 0), we insert our parameterization into the Schrödinger
Eq. (2.1). The result is an ordinary nonlinear differential equation

− iβ′′(k, r) + 2kβ′(k, r) + β′2(k, r) + σ(r) = 0 , (2.54)

where primes denote differentiation with respect to the radial coordinate, r.
The scattered particle becomes free at large distances, f(k, r)→ 1 at r →∞.
This result implies the boundary conditions

β(k,∞) = 0 and β′(k, r)|r=∞ = 0 . (2.55)

For the following, it is convenient to recast Eqs. (2.54) and (2.55) into a
nonlinear integro-differential equation,

β(k, r) =
1
2k

∫ ∞

r

ds
(
1− e2ik(s−r)

)
Γ (k, s), (2.56)

where4

Γ (k, r) ≡ β′2(k, r) + σ(r). (2.57)

By differentiation, we find a similar equation for β′(k, r),

β′(k, r) = i

∫ ∞

r

ds e2ik(s−r)Γ (k, s). (2.58)

Since β(k, r) appears on both sides of these equations, we can start with
Γ (k, r) = σ(r) and β(0)(k, r) ≡ 0 and solve for β(k, r) by iteration. The
result is a formal expansion in powers of the scattering potential σ(r),
4 For n > 1 space dimensions we merely need to modify the kernel Γ (k, s) by a

suitable combination of Bessel functions. Though similar in notation, this kernel
should not be confused with (in)complete Gamma functions.
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β(k, r) =
∞∑

ν=0

β(ν)(k, r) .

In view of Eq. (2.53), this expansion coincides with the usual Born series.
The νth order Born term β(ν)(k, r) obeys, from the iterated Eq. (2.56),

β(ν)(k, r) =
1
2k

∫ ∞

r

ds
(
1− e2ik(s−r)

)
Γ (ν)(k, s) . (2.59)

Here, Γ (ν) denotes the term in the expansion of Γ which is of νth order in
the potential σ(r). Notice that σ(r) only appears explicitly at level ν = 1,
while higher orders Γ (ν) involve only β′(μ) with μ < ν.

The first few Born terms from this iteration are

β(1)(k) =
1
2k

∫ ∞

0

ds
(
1− e2iks

)
σ(s) ,

β(2)(k) =
1
2k

∫ ∞

0

ds
(
1− e2iks

)
[β′(1)(k, s)]2 ,

β(3)(k) =
1
2k

∫ ∞

0

ds
(
1− e2iks

)
2β′(1)(k, s)β′(2)(k, s) . (2.60)

Similar relations can also be found for the derivatives, which appear as sources
in Eqs. (2.60),

β′(1)(k, r) = i

∫ ∞

r

ds e2ik(s−r)σ(s) ,

β′(2)(k, r) = i

∫ ∞

r

ds e2ik(s−r)[β′(1)(k, s)]2 ,

β′(3)(k, r) = i

∫ ∞

r

ds e2ik(s−r)2β′(1)(k, s)β′(2)(k, s) . (2.61)

The exponential factors in Eq. (2.59) guarantee that β(ν)(k, r) is analytic
in the upper complex k-plane provided that Γ (ν) is, and the same holds for
β′(ν)(k, r). Starting with Γ (1) = σ(r), we can now derive the analytical prop-
erties of β(ν) and β′(ν) by induction. For instance, the large |k|-behavior of
β(ν) follows from the respective integral equations by a simple integration by
parts, which allows to estimate the remainder using the Riemann–Lebesgue
lemma. For the value at the origin, β(ν)(k) ≡ β(ν)(k, 0), we find:

1. If the potential σ(r) is regular and sufficiently short-ranged [1, 2], the
function β(ν)(k) is holomorphic in the upper half-plane including k = 0.

2. At large momenta |k| → ∞ (again in the upper complex k-plane), β(ν)(k)
decays as |k|−2ν+1. Similarly β′(ν)(k) = dβ(ν)(k,r)

dr

∣∣∣
r=0

decays as |k|−2ν+2.
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Finally, we define the approximate Jost function

Fq(k) ≡ exp

[
i

q∑
ν=1

β(ν)(k)

]
. (2.62)

Notice that the Born series expands the logarithm of the Jost function, rather
than the function itself. Thus, Eq. (2.62) gives the qth order Born approxi-
mation to F (k), and its (negative) phase is consequently the phase shift in
qth order Born approximation. Since β(ν)(−k) = −β(ν)∗(k) for real k (cf.
Eq. (2.54)), we can again follow our previous steps and relate the phase shift
to the exponents β(ν)(k),

δq(k) = −Re

q∑
ν=1

β(ν)(k) . (2.63)

The analytical properties of Fq(k) follow directly from those of β(ν)(k) and
the convergence of the Born series β(k) =

∑∞
ν=1 β

(ν)(k) at large |k| in the
upper half-plane [1, 2]:

(a) the Born approximation Fq(k) is analytic and has no zeros in the upper
complex k-plane including k = 0;

(b) the difference | lnF (k) − lnFq(k)| falls like |k|−2q−1 as |k| → ∞ in the
upper complex k-plane.

With these analytic properties of scattering data at hand, it is now easy
to prove the basic sum rule Eq. (2.47) as outlined in the last section. We start
with the integral

Ip,q ≡
∫ ∞

−∞
dk k2p d

dk
[lnF (k)− lnFq(k)] (2.64)

=
∫ ∞

0

dk k2p d

dk
[lnF (k)− lnF (−k)− lnFq(k) + lnFq(−k)]

= −2i
∫ ∞

0

dk k2p d

dk
[δ(k)− δq(k)] = −2i

∫ ∞

0

dk k2p d[δ(k)]q
dk

.

This integral can also be computed by contour integration as indicated in
Fig. 2.1. The analytic property (b) above ensures that the integral along the
semi-circle at |k| → ∞ vanishes for q ≥ p. Moreover, d lnF/dk has simple
poles of unit residue at each bound state, and d lnFq/dk is holomorphic in
the upper k-plane (property (a) above). Therefore, Cauchy’s theorem gives

Ip,q = 2πi Res
{
k2p Ḟ (k)/F (k) ; Im k > 0

}
= 2πi

∑
j

(iκj)2p ,

as long as q ≥ p. Together with Eq. (2.64), this result proves the basic sum
rules Eq. (2.47).
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2.4.3 The Symmetric Channel in One Dimension

The symmetric channel in one space dimension is special since the deriva-
tive of the scattering wavefunction vanishes at the origin rather than the
wavefunction itself. As we will see, this change leads to subtleties that can
introduce anomalous contributions to the sum rules when too many subtrac-
tions are attempted:

∫ ∞

0

dk

π
k2p d

dk
[δ(k)]q = −

∑
j

(−κ2
j )

p + Ianom
p,q . (2.65)

As before, we need q ≥ p subtractions for the integral to converge. The
anomalous term only arises when q ≥ 2p. As a result, the “minimally sub-
tracted” sum rules are non-anomalous, except for the case p = q = 0, which
is Levinson’s theorem. For that special case we will compute Ianom

0,0 = 1
2 and

recover the modified theorem in the symmetric channel [7],
∫ ∞

0

dk

π

d

dk
δ(k) =

1
π

(δ(∞)− δ(0)) =
1
2
−
∑

j

1 =
1
2
− n . (2.66)

This formula seems to be incorrect for the trivial case of vanishing potential.
In that case, however, there exists a “half-bound” state at k = 0 whose
wavefunction approaches a constant (rather than a generic linear function)
at large distances. In the contour integration that proves the sum rules, we
must then avoid the bound state pole at k = 0 using a small semi-circle
around the origin. Thus the integral picks up half the usual contribution
from a bound state. Such states can occur in any channel, when a state is
on the threshold of binding. Since the symmetric channel in one dimension
has a bound state for an arbitrarily weak attractive potential (and no bound
state for an arbitrarily weak repulsive potential), the free background is an
example of this otherwise exceptional situation.

Next we turn to the proof of the anomalous sum rule Eq. (2.65). The
regular solution to the Schrödinger equation obeys the boundary conditions
φ′(k, 0) = 0 and φ(k, 0) = 1. Since the scattering wavefunction ψ(k, r) is
proportional to it, we can represent ψ(k, r) in terms of the Jost solution

ψ(k, r) =
1

2ki
[G(k)f(−k, r)−G(−k)f(k, r)] , (2.67)

where G(k) ≡ df(k,r)
dr

∣∣∣
r=0

replaces the definition in Eq. (2.7). From the defin-
ing asymptotic behavior

ψ(k, r)→ e−ikr + e2iδ(k)eikr for r →∞, (2.68)
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we now read off the phase shift,

δ(k) =
1
2i

[ln(−G(−k))− lnG(k)] . (2.69)

So far, these relations look very similar to the antisymmetric channel, with
the Jost function F (k) replaced by G(k). Using our previous parameterization
(2.52) of the Jost solution, we find

G(k) = i(k + β′(k, 0)) eiβ(k,0) . (2.70)

We will proceed as before and compute the integral in the sum rule (2.65)
by contour integration. To eliminate the large circle in the upper k-plane (cf.
Fig. 2.1), the Born approximation lnGq(k) must again be subtracted. In view
of Eq. (2.70), the correct Born approximation to G(k) is therefore

lnGq(k) = ln(k + β′(k))�q + lnFq(k) +
π

2

= ln(k) + ln(1 +
β′(k)
k

)�q + lnFq(k) +
π

2
, (2.71)

where the bracket notation “. . .�q” indicates that all terms up to order q
in the background potential should be kept, the complement of Eq. (2.48).
As we will observe, the anomaly arises because Gq(k) fails to be analytic at
k = 0; instead, the threshold pole at k = 0 contributes with half its residuum,
which is the anomaly. This situation can arise even for q = 0 because of the
half-bound state in the non-interacting case. Using the analytic properties of
Fq(k), β(k, r), and β′(k, r) derived in the last section, it is now easy to verify
that

(a) the Born approximation Gq(k) is analytic and has no zeros in the upper
complex k-plane except for k = 0;

(b) the difference | lnG(k)− lnGq(k)| decays like |k|−2q−1 at large momenta
|k| in the upper complex k-plane;

(c) the function k2pd lnGq(k)/dk has a simple pole with residue 2Ianom
p,q at

k = 0. In the (symmetrized) contour integral this pole contributes with
half its residue, i.e., Ianom

p,q ;

(d) The anomaly vanishes for 2p > q.

To complete the analysis, we compute the residue from the singularity of
Gq(k) at k = 0. Only the first term in Eq. (2.71) is potentially singular, since
we already established that lnFq(k) is analytic at k = 0. Thus the only part
of the integrand in Eq. (2.64) (now with the replacements F (k)→ G(k) and
Fq(k)→ Gq(k)) that may be singular at k = 0 arises from
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k2p d

dk
ln(k + β′(k))�q = k2p

⌊
1 + dβ′(k)

dk

k + β′(k)

⌋

q

= k2p−1

⌊(
1 +

dβ′(k)
dk

) ∞∑
t=0

(
−β′(k)
k

)t
⌋

q

.(2.72)

Since the functions β′(ν)(k) are all analytic near k = 0, an anomalous con-
tribution to the sum rule will only result if the prefactor k2p−1 is overcome
by the 1/k terms in the sum on the right-hand side of Eq. (2.72). Note that
the “. . .�q” prescription terminates the sum over t. Though the particular
upper limit depends on the order at which β′(k) is considered, we have at
least t ≤ q. The most singular term from that sum is (−β′(1)(k)/k)q ∼ k−q,
which outweighs the prefactor k2p−1 if q ≥ 2p. If q = 2p the singularity is a
simple pole at k = 0; for q > 2p there are poles of higher order as well. It is
now straightforward (though increasingly tedious) to pull out the residue of
the simple pole from Eq. (2.72), which is twice the anomalous contribution
to the sum rule:

Ianom
p,q =

1
2

Res

⎧⎨
⎩k2p−1

⌊(
1 +

dβ′(k)
dk

) ∞∑
t=0

(
−β′(k)
k

)t
⌋

q

; k = 0

⎫⎬
⎭ . (2.73)

Let us finally illustrate this result by looking at some important special cases:

p = q = 0: Levinson’s Theorem
Since the zeroth order Born approximation vanishes, β(0)(k, r) ≡ 0, the
residue solely arises from the prefactor, which is just 1/k and we have
Ianom
0,0 = 1/2. As mentioned above, this result is the modification of Levin-

son’s theorem in the symmetric channel, Eq. (2.66) [7].
p = q > 0: Minimal Subtraction

This is the minimal number of subtractions which will render the integral
in the sum rules finite. The most singular term in the sum on the right-
hand side of Eq. (2.72) (through qth order in the potential) is proportional
to (−β′

1(0))q/kq+1. Combined with the prefactor the integrand in the
contour integral behaves as k2p−1−q = kp−1 near k = 0. For p = q > 0,
there is thus no threshold pole and Ianom

p,p = 0: the minimally subtracted
form of the sum rules is non-anomalous.

2p > q: Oversubtraction Without Anomaly
By the same argument as above, the most singular term in the integrand
now behaves as k2p−1−q near k = 0, so that no anomaly arises even for
oversubtractions, as long as q < 2p.

q = 2p: Computation of the Anomaly
In this case we have Ianom

p,2p = 1
2

[
−β′(1)(0)

]2p
. From the integral Eqs. (2.61),

we have
β′(1)(0) = i

∫ ∞

0

dr σ(r),
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so that the anomaly takes the explicit form

Ianom
p,2p =

(−1)p

2

[∫ ∞

0

dr σ(r)
]2p

. (2.74)

The first non-trivial application of this result is the p = 1 sum rule with
two Born subtractions (i.e., one oversubtraction):

∫ ∞

0

dk

π
k2 d

dk

[
δ(k)− δ(1)(k)− δ(2)(k)

]
=
∑

j

κ2
j −

1
2

[∫ ∞

0

dr σ(r)
]2
.

(2.75)

This relation was first discovered in Ref. [8] by direct evaluation of the
Feynman graph corresponding to the second Born approximation. Here
we see that it follows from a careful analysis of the analytic properties of
the Born approximation near k = 0.

References

1. K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory.
Springer, New York, 1977. 15, 17, 27, 28

2. R. G. Newton, Scattering Theory of Waves and Particles. Springer, New York,
1982. 15, 16, 17, 27, 28

3. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Na-
tional Bureau of Standards, 1964. 16

4. R. G. Newton, Chapter 12.1. In Scattering Theory of Waves and Particles.
Springer, New York, 1982. 21

5. R. D. Puff, Phys. Rev. A11 (1975) 154. 23
6. N. Graham, R. L. Jaffe, M. Quandt, and H. Weigel, Annals Phys. 293 (2001)

240. 23
7. G. Barton, J. Phys. A18 (1985) 479. 29, 31
8. N. Graham, R. L. Jaffe, M. Quandt, and H. Weigel, Phys. Rev. Lett. 87 (2001)

131601. 32



3 Quantum Field Theory and the Spectral
Method

The techniques of quantum field theory are by now a standard topic in theo-
retical physics, but their realization in the spectral method is rather subtle.
In this chapter, we begin with a review of standard results of quantum field
theory and then show how spectral techniques apply in this context. We de-
velop a general set of tools applicable both to calculations of the Casimir
energy and to more general observables, such as the energy density, relevant
for general relativity, or the interface tension of a brane-like background con-
figuration. These subjects will be picked up in the applications.

3.1 Small-Amplitude Quantum Corrections

We begin by considering a single real boson ϕ in d = (n + 1) spacetime
dimensions, as discussed in the introduction. However, our methods can be
applied to fermions as well; sign changes and some minor differences in the
dimensional regularization and renormalization procedures are addressed in
Sect. 3.6. Gauge couplings require some extra care; a detailed investigation
can be found in the applications, cf.Sect. 8.2.

We consider the bare Lagrangian density

L =
1
2
∂μϕ∂

μϕ− m2

2
ϕ2 − V (ϕ) , (3.1)

with an interaction potential V (ϕ). We are interested in the quantum contri-
butions to the energy of a localized and time-independent background config-
uration ϕ0(x), which is either a solution to the classical equation of motion
or held in place by an external source. In both cases, ϕ0 is a stationary point
of the classical action, with the (finite) classical energy Ecl. The quantum
fluctuations φ about the background ϕ0 are described by the Lagrangian
density

L =
1
2
∂μφ∂

μφ− m2

2
φ2 − 1

2
V ′′(ϕ0(x))φ2 + · · · . (3.2)

The leading quantum corrections to Ecl arise from the small-amplitude os-
cillations about ϕ0; it is therefore permissible to truncate the Lagrangian,
Eq. (3.2) at quadratic order. In this harmonic approximation, the background
ϕ0 acts as an external potential

Graham, N., et al.: Quantum Field Theory and the Spectral Method. Lect. Notes Phys. 777,

33–61 (2009)
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σ(x) ≡ V ′′(ϕ0(x)) (3.3)

for the fluctuations φ. The soliton ϕ0(x) is assumed to be localized, and so the
potential σ(x) is localized as well and we may apply the approach developed
in the previous chapter. The Lagrangian for the small-amplitude oscillations
thus becomes

L =
1
2
∂μφ∂

μφ− 1
2

(m2 + σ(x))φ2 . (3.4)

3.2 The Canonical Formalism

In the introduction we defined the vacuum energy as the formal expression
Eq. (1.3), with the background potential entering through its distortion of
the spectrum of small oscillations in the harmonic approximation. We also
noted that this definition, if taken too literally, leads to subtle ambiguities
that eventually render practical calculations all but meaningless. From a field
theory point of view, a much better starting point is the energy density of the
vacuum, defined unambiguously from the VEV (vacuum expectation value)
of the energy-momentum tensor, Tμν .

The direct application of Noether’s theorem gives the canonical form1

Tμν =
∂L

∂(∂μφ)
∂νφ− gμνL . (3.5)

For the simple boson model of Eq. (3.4), we obtain

Tμν = ∂μφ∂νφ+
1
2
gμν

[
−∂αφ∂

αφ+ (m2 + σ(x))φ2
]
. (3.6)

Upon quantization, the energy density associated with small-amplitude vac-
uum fluctuations φ is thus given by the vacuum expectation value

ε(x, t) =
〈
Ω
∣∣∣T̂00(x, t)

∣∣∣Ω〉 . (3.7)

Here we denote the true vacuum (the lowest energy state) in the presence
of a non-trivial background σ by |Ω〉, while |0〉 is reserved for the trivial
vacuum when σ = 0. The field φ in this formula is the canonically quantized

1 If φ is generalized to be a gauge field, the analog of Eq. (3.5) is neither symmetric
nor gauge invariant. Both deficiencies may be cured by adding a total derivative
in such a way that both the integrated charges (energy and momentum) and their
conservation is maintained. The resulting energy–momentum tensor can also be
obtained directly either by varying the action with respect to the spacetime
metric, as one does in general relativity (the only situation in which such total
derivative terms are important) or by replacing the ordinary derivatives in the
Noether definition by covariant ones.
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field operator. As it stands, Eq. (3.7) is not yet well defined, since the short-
distance divergences in the matrix element need to be renormalized by adding
suitable counterterms to T̂00. We will discuss renormalization in greater detail
in Sect. 3.6.

The vacuum energy is now simply the spatial integral over the density,

Evac(t) =
∫
dnx ε(x, t) . (3.8)

If the background potential σ is time dependent, the energy density ε will be
as well. Furthermore, the classical conservation law for Tμν translates into
a Ward identity for the expectation value Eq. (3.7), which ensures that the
vacuum energy is conserved, ∂Evac/∂t = 0.

If the potential σ is derived from a soliton background, the energy Evac

represents the leading quantum correction to its mass or energy. In other
applications, Evac is the energy of the vacuum under the influence of exter-
nal conditions that can be parameterized by σ, such as the Casimir force
between two grounded plates in quantum electrodynamics. As will be shown
in Chap. 7, the formalism of quantum field theory can be combined with the
spectral method to gain new insight into Casimir problems as well.

As we have defined it, Evac is O(�). In quantum field theory language this
is the one-loop contribution to the quantum energy.

Other methods to compute the vacuum energy Evac, such as the world-
line formalism [1–4] or the derivative expansion [5–9], are often based on
the effective action in Euclidean space, cf.Sect. 3.3. Formally, the result is
an expression very similar to Eq. (3.8), in which Evac is given as the space
integral of some space-dependent density. In general, however, this action
density will differ from the true energy density of the vacuum, Eq. (3.7), by
a total derivative. This distinction can be important when comparing our
method to other approaches.

3.2.1 The Vacuum Energy Density

Before starting with our derivation, we must emphasize one practical restric-
tion of the spectral method: The general framework requires enough sym-
metry to separate the scattering problem into partial waves, so that we can
apply the scattering theory techniques of the previous chapter. Though other
methods are more general in this respect, for applications in particle physics,
at least, most extended field configurations of interest tend to be highly sym-
metric. Moreover, the separation into partial waves may occur in larger spaces
involving a combination of position space and isospin or other gauge quantum
numbers. The restriction may even be relaxed to include coordinates in which
the background field is translationally invariant, so that brane- or string-like
configurations can be treated as well, cf. Sect. 8.2. If the spectral method
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applies, it is of unrivaled efficiency and, unlike most other approaches, in-
volves no approximations or systematic errors (beyond the basic one-loop
truncation in Eq. (3.4)).

For the simple boson model at hand, we will assume that the interaction
σ(x) only depends on the radial coordinate r = |x|. It is then clear that the
energy density ε(x) will also be rotationally symmetric. We define ε(r) as the
energy density in a spherical shell of radius r,

ε(r) =
2πn/2

Γ (n
2 )
rn−1〈Ω|T̂00(x)|Ω〉ren . (3.9)

The subscript “ren” indicates that the matrix element must be properly
renormalized to find a finite and unambiguous answer. This procedure will
be carried out in Sect. 3.6 by adding suitable counterterms. For the moment,
we suppress their explicit appearance.

The canonical quantization of our model (3.4) proceeds along the standard
lines: We define the canonical momentum by π ≡ ∂L /∂φ̇ and elevate the
Hamiltonian to the operator quantity

Ĥ =
1
2

∫
d3x
[
π̂2(t,x) + (∇φ̂(t,x))2 + (m2 + σ) φ̂2(t,x)

]
. (3.10)

Next, the canonical equal time commutation rules must be imposed on the
field operator and its conjugate momentum. The Heisenberg equations of
motion become

i ∂0φ̂(t,x) =
[
φ̂(t,x), Ĥ

]
= i π̂(x, t)

i ∂0π̂(t,x) =
[
π̂(t,x), Ĥ

]
= i (Δ−m2 − σ(x)) φ̂(t,x) .

(3.11)

Finally, π̂(t,x) can be eliminated to find the expected equation of motion for
the field operator,

∂2
0 φ̂(t,x) = (Δ−m2 − σ(x)) φ̂(t,x) . (3.12)

Now we use the spherical symmetry of the background potential to carry
out a partial wave decomposition,

φ̂(t,x) =
∑
{�}

φ̂�(t, r)Y{�}(x̂) , (3.13)

where Y{�}(x̂) are the n-dimensional spherical harmonics and {�} refers to
the set of all angular quantum numbers in n space dimensions. Upon insert-
ing Eq. (3.13) in the field equation, the partial wave channels decouple and
we obtain an infinite set of equations for the radial field operators φ̂�(t, r).
We make a Fock decomposition and introduce creation and annihilation op-
erators, a†�(k) and a�(k), via
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φ̂�(t, r) = r
1−n

2

∫ ∞

0

dk√
πω

[
ψ�(k, r) e−iωta�(k) + ψ∗

� (k, r) eiωta†�(k)
]

+ r
1−n

2

∑
j

1√
2ωj

[
ψ�j(r) e−iωjta�j + ψ�j(r) eiωjta†�j

]
, (3.14)

where ω ≡
√
m2 + k2 and ωj =

√
m2 − κ2

j are the scattering and bound
state energies, respectively. The c-number wavefunctions ψ�(k, r) obey the
time-independent Schrödinger equation (2.1) and form a complete set in each
angular momentum channel �,

2
π

∫ ∞

0

dk ψ∗
� (k, r)ψ�(k, r′) +

∑
j

ψ�j(r)ψ�j(r′) = δ(r − r′) , (3.15)

where we have normalized the wavefunctions ψ� such that the creation and
annihilation operators obey the standard commutation relations,

[a�(k), a
†
�′(k

′)] = δ(k − k′)δ��′ . (3.16)

These relations ensure the usual particle interpretation: a†�(k) occupies a
ψ�-mode of momentum k when acting on |Ω〉.

Inserting the Fock decomposition into the energy density, Eq. (3.9), the
result is most clearly expressed in terms of the local spectral density, ρ�(k, r),
that is defined via the Green’s function (2.13)

ρ�(k, r) ≡ −2ik G�(r, r; k) , Im k ≥ 0 (3.17)

in the upper complex k-plane. The local density of scattering states is then
obtained from ρ�(k, r) when k approaches the real axis from above,

Re ρ�(k, r) = Im {2k G�(r, r; k)} = 2ψ∗
� (k, r)ψ�(k, r) , Im(k)↘ 0 . (3.18)

Using that Re (G�(r, r; k)) and Im (G�(r, r; k)) are, respectively, even and
odd functions of the (real) momentum parameter k in the differential equa-
tion (2.1), we obtain [10]

ε(r) =
∑

�

D(�)
∫ ∞

−∞

dk

2πi
ω

[
1 +

1
4ω2

Dr

]
kG�(r, r, k)

+
∑

�

D(�)
∑

j

ωj

[
1 +

1
4ω2

j

Dr

]
ψ�j(r)2 + εct(r) . (3.19)

Here,Dr = ∂r(∂r−(n−1)/r) is a radial derivative operator and εct(r) denotes
the contribution from the counterterms in the energy density operator T̂00,
cf. Eqs. (3.7) and (3.9). Finally, the degeneracy factor D(�) in each channel
� is the dimension of the corresponding irreducible tensor representation of



38 3 Quantum Field Theory and the Spectral Method

the rotation group SO(n). It is the dimension of the space of symmetric
tensors with � indices, each running from 1 to n with all traces (contractions)
removed. Working out the combinatorics gives

D(�) =
Γ (n+ �− 2)

Γ (n− 1)Γ (�+ 1)
(n+ 2�− 2) , (3.20)

which reduces to the familiar degeneracy factor 2�+1 for n = 3. In Eq. (3.19),
the quantum energy density is expressed as an integral of the single-particle
energies ω(k) over all real k, weighted by the local density of states in
each channel �, plus a similar contribution from the bound states ωj . For
practical purposes, however, it is much more convenient to rotate the inte-
gration contour to the upper complex k-plane (see Fig. 3.1). We get three
contributions:

1. the residues from the bound state poles k = iκj on the positive imaginary
axis exactly cancel the explicit bound state contribution in G� (i.e.,the
last term in Eq. (2.13)) [11];

2. the discontinuity of the square root cut in the single-particle scattering
energies ω =

√
m2 + k2 yields an integral along the imaginary axis, k = it

with t ∈ [m,∞];
3. the large semi-circle at infinity gives no contribution if the integrand falls

off fast enough as |k| → ∞.

The last point is usually not true, however, since the contribution from
|k| → ∞ in fact diverges in space dimensions n ≥ 1. This problem is, of
course, related to the usual ultraviolet divergences that plague any matrix
element in quantum field theory. To solve it, the decay of the Green’s function
at large |k| has to be improved in Eq. (3.19) before rotating the integration
contour. We will be able to accomplish this by subtracting a few low order

Re k0

m

Im k

iκ3

iκ2

iκ1

C

Fig. 3.1 Deformation of the momentum integration contour in Eq. (3.19)
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Born approximations to the Green’s function, because the Born approxi-
mate becomes accurate at large |k|. The required number N of subtractions
depends on the model and the dimension of spacetime. By Eq. (3.17), the
subtraction carries over to the local spectral density, which is the primary
quantity of interest. We will use the notation of Eq. (2.48),

[ρ�(k, r)]N ≡ ρ�(k, r)− ρ(0)
� (k, r)− · · · − ρ(N)

� (k, r) (3.21)

for theN times Born subtracted density, and likewise for the Green’s function,
phase shifts, etc.

Formally, the Born series is an expansion of the Green’s function G�

in powers of the interaction σ(r) such that ρ(N)
� = O

(
σN
)
. When used in

Eq. (3.19), the Born terms thus correspond to an expansion of the vacuum
energy density in powers of σ. Perturbative quantum field theory describes
the very same expansion quite differently in terms of Feynman diagrams.
Thus we use a simple strategy:

Subtract a sufficient numberN of terms of the Born series from the
spectral density to remove the large |k| divergence, and add back
in exactly what was subtracted in the form of Feynman diagrams.
The diagrams can then be combined with the counterterms in the
usual fashion of perturbative quantum field theory to provide a
finite and unambiguous answer.

This simple prescription shifts the renormalization procedure entirely to
the perturbative sector (which is well understood), while the non-perturbative
spectral contribution is manifestly finite. However, some care is necessary in
carrying out this substitution. The low-order Feynman diagrams and like-
wise the low-order Born approximations in Eq. (3.19) are typically diver-
gent, which is why we subtracted them in the first place. As mentioned in
the introduction, the formal manipulation of such divergent quantities may
lead to unexpected ambiguities. To avoid these problems, we use a common
regularization procedure for both the Feynman and Born series simultane-
ously. Dimensional regularization is typically the most convenient choice. In
Sect. 3.5, we present a detailed treatment of the case N = 1, in which we
show rigorously that the lowest order Born and Feynman terms are equal as
functions of dimension.

After the Born subtraction, the final expression for the energy density in
a spherical shell of radius r becomes2

2 Notice that the Feynman sum starts at i = 1, i.e.,the vacuum bubble diagram
is not inserted back. Thus Eq. (3.22) really represents the change in the vac-
uum energy density due to the interaction. In other words, we have adopted the
renormalization condition that the energy density of the trivial vacuum is zero.
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ε(r) = −
∑

�

D(�)
∫ ∞

m

dt

2π

√
t2 −m2

[
1− 1

4(t2 −m2)
Dr

]
[ρ�(it, r)]N

+
N∑

i=1

ε
(i)
FD(r) + εCT(r) . (3.22)

Both lines in this expression are now separately finite. The renormaliza-
tion of εFD in the second line is standard; we will briefly review it in Sect. 3.6.
Formally, the first line in Eq. (3.22) represents the infinite sum of all Feyn-
man diagrams of order (N+1) and higher. Renormalization group arguments
prove that the final result is cutoff- and scheme-independent.

One final remark is in order: The transfer of the ultraviolet divergences
into Feynman diagrams only determines the minimal number N of Born sub-
tractions. There is, of course, nothing to prevent oversubtraction of more Born
terms, as long as the corresponding Feynman diagrams are added back in.3

Such an oversubtracted formula is sometimes useful to improve the numerical
stability of calculations of the spectral part of the density formula (3.22), in
particular the sum over angular momentum channels. On the other hand, the
calculation of higher order Feynman diagrams quickly becomes difficult, so
we usually subtract only the minimal number of Born approximations.

3.2.2 The Vacuum Energy

Next we turn to the vacuum energy Evac[σ], which is obtained by integrating
the energy density given by Eq. (3.22). Since both the t-integral and the sum
over channels in Eq. (3.22) are absolutely convergent, the order of integration
can be interchanged, with the result

Evac[σ] = −
∑

�

D(�)
∫ ∞

m

dt

2π

√
t2 −m2

∫ ∞

0

dr [ρ�(it, r)]N +
N∑

i=1

E
(i)
FD +ECT .

(3.23)
Of course, E(i)

FD and Ect are the radial integrals of the corresponding densities.
In practice, the Feynman diagrams for the total energy are most conveniently
computed from the functional determinant representation in Euclidean space,
cf.Sect. 3.5.

The first term in Eq. (3.23) can be rewritten using Eq. (2.33) on the
imaginary axis k = it, which yields

∫ ∞

0

dr [ρ(it, r)]0 =
d

dt
lnF�(it) ≡

dν�(t)
dt

, (3.24)

3 The oversubtracted diagrams and Born approximations give finite contributions
to the energy density, so their equality can be established without using a regu-
lator.
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where the logarithm of the Jost function on the imaginary axis,

ν�(t) ≡ ln F�(it), (3.25)

is a real function. In Eqs. (2.19) we have derived an efficient method for
computing ν�(t). The final result for the vacuum energy is then

Evac[σ] =
∑

�

D(�)
∫ ∞

m

dt

2π
t√

t2 −m2
[ν�(t)]N +

N∑
i=1

E
(i)
FD + ECT . (3.26)

Using the tools developed in the previous chapter the formulations (3.19) and
(3.26) are well suited for numerical evaluation. Even so, it is instructive to
return to the real axis, t → −ik. For this purpose, one reverses the defor-
mation of the momentum integration contour that led to Eq. (3.26), thereby
picking up the discrete contributions from the bound state poles. The real
part, Re(ν�), is odd in k and does not contribute to the integral, whence only
Im(ν�) survives, which is the phase shift. After an integration by parts using
Levinson’s theorem, we obtain

Evac[σ] =
∑

�

D(�)

⎡
⎣∫ ∞

0

dk

2π

√
k2 +m2

d

dk
[δ�(k)]N +

1
2

∑
j

ωj

⎤
⎦

+
N∑

i=1

E
(i)
FD + ECT . (3.27)

As discussed in the introduction, this formula represents the sum over modes
of 1

2�ω, weighted by the density of states.
The equations (3.19), (3.26), and (3.27) are the basis of the spectral

method. In the next sections, we will discuss the perturbative part of our
approach and show how to evaluate and renormalize the relevant Feynman
diagrams. Traditionally, such graphs are computed using a set of Feynman
rules for vertices, propagators, and symmetry factors. A direct and concise
approach to this calculation starts from the more modern path integral rep-
resentation of the vacuum energy.

3.3 The Path Integral Approach

In this section we briefly review the relation between the vacuum energy and
the vacuum to vacuum transition amplitude as computed in the path integral
formalism.

The starting point is a static background field σ(x) coupled to our quan-
tum field ϕ. To be specific we again consider the Lagrangian density
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L = 1
2

(
(∂μϕ)(∂μϕ)− (m2 + σ(x)− iε)ϕ2

)
= 1

2ϕ
[
−�−m2 − σ(x) + iε

]
ϕ, (3.28)

up to total derivate terms that do not involve the background σ. The role of
the additional iε term will shortly become clear.

For a static system the Hamiltonian of the stationary Schrödinger problem
is well defined and we may assume that the background σ(x) is adiabatically
switched on at a large early time −T/2 and off at a very late time T/2. That
is, the time scale on which σ(x) varies is large but nevertheless smaller than
T . During that transition the vacuum state picks up a phase proportional to
its energy when the background is present [12]

Evac[σ] =
i

T
ln
(
〈vac+|vac−〉σ
〈vac+|vac−〉0

)
. (3.29)

The path integral in quantum field theory is the superposition of vacuum to
vacuum transition amplitudes. When evaluated in Euclidian spacetime, large
time intervals project the ground state contribution from that superposition.
Hence

〈vac+|vac−〉σ ∝
∫

[dϕ] e i
∫

dDxL , (3.30)

as T → i∞. Formally, the path integral may be written as a product of
infinitely many ordinary integrals. Since the integration variable ϕ appears
only quadratically in our model Lagrangian these are Gaußian integrals, each
of which contributes a factor proportional to the inverse square root of the
operator between the two factors of ϕ. Thus we obtain the vacuum transition
amplitude as

〈vac+|vac−〉σ ∝
(
Det
[
� +m2 + σ(x)− iε

])− 1
2

∝
(
Det
[
−�E +m2 + σ(x)

])− 1
2 , (3.31)

where the continuation to Euclidean space, x0 → −ix4, is indicated in the
second line. We now recognize that the iε prescription in Eq. (3.28) ensures
the convergence of the path integral, Eq. (3.30). Furthermore, it avoids the
poles in the functional determinant by continuing to real x4, which defines
the Wick rotation.4 Substituting this expression into Eq. (3.29) yields the
vacuum polarization energy

Evac [σ] =
−i
2T

Tr ln
� +m2 + σ(x)− iε

� +m2 − iε
. (3.32)

Formally this is the result we seek, but of course it must be properly regu-
larized and renormalized.
4 More precisely, correlation functions are analytic functions of the complex time

variable z = x4 + ix0 in the half-plane x4 > 0 [13].
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In the above discussion the potential emerged as an external background
field. In some instances, however, we consider non-trivial (usually static) con-
figurations in self-interacting theories. We call such a configuration ϕcl to
indicate it is a classical background, and assume it to be a soliton-like config-
uration with non-zero classical energy. The quantum correction to this energy
results from small-amplitude fluctuations, η, with the O (�) contribution aris-
ing from the η2 terms. (Here we employ natural units � = c = 1, but use � as
a counting device for quantum corrections.) In general the expansion around
ϕcl also generates a term linear in η, which is canceled by introducing an
additional source field J(x) that also couples linearly to field variable. The
source is chosen to make ϕcl a stationary point of the action, so that the
terms linear in η vanish. We then compute the vacuum transition amplitude
as a functional of the source,

〈vac+|vac−〉J = eiW [J] = ei
∫

dDx[L (ϕcl)+Jϕcl]

×
∫

[dη] exp
{

−i
2

∫
dDx η

[
� +m2 + V ′′(ϕcl)− iε

]
η

}
, (3.33)

where the expansion about ϕcl is indicated by the Taylor expansion of the
self-interaction potential. The Legendre transformation

Γ [ϕ] = W [J ]−
∫
ddxJ(x)ϕ(x) with ϕ(x) =

δ

δJ(x)
W (J) , (3.34)

defines the effective action. Using ϕ− ϕcl = O (�) and the fact that ϕcl is a
stationary point of

∫
dDx [L (ϕcl) + Jϕcl], we have [14]

Γ [ϕcl] =
∫
ddxL (ϕcl) +

i

2
Tr ln

� +m2 + V ′′(ϕcl)− iε
� +m2 − iε

+ O
(
�

2
)
. (3.35)

When transformed to Euclidean space, −Γ/T is to be interpreted as the
vacuum energy when a (static) source is present during the large time interval
T [12]. Since the source fixes ϕ, this is thus the vacuum energy of a prescribed
field configuration,

TEvac[ϕcl] = −
∫
ddxL (ϕcl)−

i

2
Tr ln

� +m2 + V ′′(ϕcl)− iε
� +m2 − iε

+ O
(
�

2
)
.

(3.36)
Hence we find formally the same expression for the O (�) quantum correc-
tion to the vacuum energy, regardless of whether we consider an external
background or a soliton-type configuration in a self-interacting theory.

3.4 Connecting the Functional and Canonical
Formalisms

We now show how to formally connect the functional determinant representa-
tion for the energy in Eq. (3.32) to the spectral sum in Eq. (3.27). We follow
the treatment of Ref. [15]. For a time-independent background potential, the
differential operator in Eq. (3.32) is separable into eigenfunctions of −∂2

t and
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the single-particle Hamiltonian −∇2 +m2 +σ(x). The eigenvalues of the for-
mer are given by Ω2

n, where Ωn = 2πn/T are the Matsubara frequencies with
n = 0, 1, 2, 3 . . ., while the eigenvalues of the latter are ω2

j , where the ωj are
the eigenenergies that appear in the spectral sum, Eq. (1.3). To evaluate the
determinant, we take the product over all such modes. We note that through-
out this calculation, we can absorb all coefficients that do not depend on the
dynamics into rescalings of the functional measures, which will be labeled
by Ci. Also, we formulate the problem in Minkowski space but for simplicity
omit the iε prescription. We have

(
det
[
−�−m2 − σ(x)

])− 1
2 =

∞∏
n=0

∏
ωj

[(
2πn
T

)2

− ω2
j

]−1/2

= C1
∏

ωj≥0

∞∏
n=1

[
1−
(
ωjT

2πn

)2
]−1

= C2
∏

ωj≥0

[
sin

ωjT

2

]−1

= C3 exp

⎡
⎣− i

2

∑
ωj≥0

ωjT

⎤
⎦ ∏

ωj≥0

[
1− e−iωjT

]−1
. (3.37)

We have taken the opposite sign in the argument of the functional determi-
nant, but this choice is arbitrary; it drops out when compared to the non-
interacting case with σ = 0, as in Eq. (3.32). We now expand each factor in
the second product as a geometric series,

[
1− e−iωjT

]−1
=

∞∑
nj=0

e−injωjT , (3.38)

where nj = 0, 1, 2, . . . can be interpreted as the occupation number for
mode j. Thus we can rewrite the second factor as a sum over all occupa-
tions numbers of every mode,

det
[
−�−m2 − σ(x)

]−1/2
= C′ exp

⎡
⎣− i

2
T
∑

j

ωj

⎤
⎦∑

{nj}
exp

⎡
⎣−iT∑

j

njωj

⎤
⎦ .

(3.39)
We evaluate the functional integral for T large, with infinitesimal negative
imaginary part, so this expression is dominated by the contribution when all
occupation numbers nj vanish, i.e., nj = 0, which is the vacuum configura-
tion. Thus we have found that the effective action becomes C′ exp[−iEvacT ],
where the vacuum polarization energy is given by the formal sum of zero-
point energies Evac =

∑
j

ωj

2
.

3.5 Feynman Diagrams and the Born Series

Next we discuss the energy density and its Feynman series and show that
the integral of this series equals the expansion of Eq. (3.31) order by order.
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We find the energy density as the quantum mechanical expectation value
ε(x) = 〈T00(x)〉, cf.Eq. (3.7). For the model with the background field σ
coupled to the quantum field ϕ we consider5

ε(x) =
1
2

∫
[dϕ]ϕ(x)T̂xϕ(x) ei

∫
ddy 1

2 [ϕ̇2−(∂ϕ)2−(m2+σ)ϕ2]
∫

[dϕ] ei
∫

ddy 1
2 [ϕ̇2−(∂ϕ)2−(m2+σ)ϕ2]

, (3.40)

with the position space operator

T̂x =←−∂ t
−→
∂ t +←−∂ · −→∂ +m2 + σ(x) . (3.41)

Total derivative terms that arise when turning derivative operators that act
to the left into ones that act to the right will not contribute to the integrated
density. To compute the expectation value of an object that is quadratic in
the field, we add an interaction that couples that object linearly to a source,
compute a logarithmic derivative with respect to the source, and then set the
source to zero. The functional integral is proportional to the inverse square
root of the determinant of the quadratic operator, giving

ε(x) =
i

2
Tr
{[
−�− (m2 + σ)

]−1
δd(x̂− x)

[
−∂2

t − ∂2 + (m2 + σ)
]}

= −iTr
{[
−�− (m2 + σ)

]−1
δd(x̂− x) ∂2

t

}
+ · · · , (3.42)

where the ellipsis in the last line refers to non-dynamical contributions that do
not involve σ. To set up the Feynman series we note that the free propagator
is S0 =

[
−�−m2

]−1
so that

[
−�− (m2 + σ)

]−1
= [1− S0σ]−1

S0. Since
the background field σ is static, it is useful to introduce frequency states |ω〉
with 〈ω|σ|ω′〉 = σδ(ω − ω′). Then the νth order term in the Feynman series
of the energy density is

ε
(ν)
FD(x) = i

∫
dω

2π
Tr′
{
ω2 (S0(ω)σ)ν

S0(ω)δd−1(x− x̂)
}
, (3.43)

where S0(ω) = (ω2 + ∂2 − m)−1 and Tr′ is the trace over all remaining
degrees of freedom, spatial and discrete. Since the above expression gives the
O(σν) contribution to the energy density, it is indeed the Feynman diagram
contribution to Eq. (3.22) with ν external σ-legs, up to total derivatives. The
spatial integration trivially yields the νth order contribution to the quantum
energy that we actually require in Eq. (3.27),

E
(ν)
FD =

∫
dd−1x ε

(ν)
FD(x) = i

∫
dω

2π
Tr′
{
ω2S0(ω) (S0(ω)σ)ν}

= − i
2

∫
dω

2π
Tr′
{
ω

(
∂

∂ω
S0(ω)

)
[σS0(ω)σS0(ω)σ . . .]

}
, (3.44)

5 The iε prescriptions in Minkowski space as in Eq. (3.28) are understood.
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with ν factors of σ but only ν − 1 factors of S0 in the square bracket. We
integrate by parts and pick up derivatives from these ν − 1 propagators.
Due to the cyclic property of the trace, each of these terms gives an equal
contribution,

E
(ν)
FD =

i

2

∫
dω

2π
Tr′
{

(S0(ω)σ)ν

+(ν − 1)ω
(
∂

∂ω
S0(ω)

)
[σS0(ω)σS0(ω)σ . . .]

}

=
i

2ν

∫
dω

2π
Tr′ (S0(ω)σ)ν

, (3.45)

which results from identifying the derivative terms in Eqs. (3.44) and (3.45).
The series can be straightforwardly summed,

Evac =
∑

ν

E
(ν)
FD = − i

2

∫
dω

2π
Tr′ ln (1− S0(ω)σ) (3.46)

= − i
2

∫
dω

2π
Tr′ ln

(
S−1

0 (ω)− σ
)

+ · · · = − i

2T
Tr ln

(
−�−m2 − σ

)
,

just as in Eq. (3.32), up to a non-dynamical and thus irrelevant constant.
Appendix B of Ref. [16] contains the analogous derivation for a fermion cou-
pled to a background gauge field.

We briefly sketch the techniques to compute the diagrams that are for-
mally written in Eqs. (3.43) and (3.45), since they are evaluated using con-
ventional Feynman rules.

If we want to carefully keep track of all total derivatives and integrations
by parts, we need to consider the coordinate space operator T̂x = T̂

(0)
x + T̂

(1)
x

that appears in Eq. (3.41), augmented by the δ-functions as in Eq. (3.42). As
indicated by the superscripts, it contains pieces of zeroth and first order in
the background potential σ(x). We compute them in momentum space

〈k′|T̂ (0)
x δd(x− x̂)|k〉 = ei(k′−k)x

[
k′0k0 + k′ · k +m2

]
,

〈k′|T̂ (1)
x δd(x− x̂)|k〉 = σ(x)ei(k′−k)x . (3.47)

The Feynman series consists of all graphs with a single φ-loop and arbitrary
insertions of T̂ (0)

x , T̂ (1)
x , and σ(x). To order σ1, for instance, we have the two

diagrams shown in Fig. 3.2. The graph in the right panel is a total derivative
and there is no counterterm for it. This diagram therefore should be finite in
all dimensions d ≤ 4, which is confirmed by explicit calculation [10].

The tadpole graph in the left panel is divergent in two or more spacetime
dimensions. To define it, we employ dimensional regularization to d = n+ 1
spacetime dimensions,

1
2i

Tr′
[
T̂ (1)

x δd−1(x− x̂)(−∂2 −m2)−1
]

=
i

2
σ(x)

∫
ddk

(2π)d

1
k2 −m2

. (3.48)
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Tx
(0)^σTx

(1)^

Fig. 3.2 First-order Feynman diagrams contribution to the energy density 〈T00〉.
The solid circle represents the φ-loop and the insertions T̂

(0,1)
x from the energy den-

sity operator are explained in the main text. In the right panel a single background
field from the expansion of the propagator in Eq. (3.42) is inserted

This diagram is renormalized by a counterterm proportional to σ(x) in the
action or, equivalently, in T00. For space dimensions n ≤ 2, the tadpole
counterterm c1 σ(x) in T00 (or L ) and one Born subtraction (N = 1) is
sufficient to remove all divergences. The precise definition of c1, including
all finite contributions, must be fixed by physical input. We imagine that
there is a Lagrangian whose stationary condition exactly yields the prescribed
background field σ and demand the so-called no-tadpole condition, i.e., the
quantum corrections do not alter this stationary point, meaning that the
counterterm exactly cancels the diagram, Eq. (3.48). This condition is pos-
sible because the diagram is local and directly proportional to σ(x). As in a
self-interacting theory, the no-tadpole condition ensures that the VEV of the
background field is fixed.

In n = 3, an additional mass counterterm c2σ
2(x) is required because of

the diagram obtained from the right panel of Fig. 3.2 by substituting T (1)
x

in place of T (0)
x . As a result, we have to perform N = 2 Born subtractions.

The coefficient c2 may be fixed by a specific choice of the renormalization
condition, and any result we obtain is only meaningful if accompanied by this
choice. The results from different renormalization conditions can be converted
into another by means of a renormalization group transformation.

The same analysis can be repeated for the vacuum energy Evac. When we
expand the determinant in σ, the νth order term can be represented as the
one-loop diagram with ν insertions of σ(x):

Tr ln
+m2 + σ(r)

+m2

(3.49)

To first order in σ, the relevant Feynman diagram can be obtained either
from expanding the functional determinant in Eq. (3.49) or by integrating
the density Eq. (3.48) over all space,6

6 As mentioned earlier, the diagram in the right panel of Fig. 3.2 is a total deriva-
tive and does not contribute to the vacuum energy.
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E
(1)
FD =

i

2

∫
dnxσ(x) ·

∫
ddk

(2π)d

1
k2 −m2

=
〈σ〉

2 (4π)
n+1

2

Γ
(1− n

2

)
mn−1.

(3.50)
As expected, it depends only on the spatial average of the potential,

〈σ〉 =
∫
dnxσ(x) =

2π
n
2

Γ (n
2
)

∫ ∞

0

σ(r) rn−1dr. (3.51)

The no-tadpole scheme will again fix the VEV of the background σ, with the
counterterm c1σ(x) in the starting Lagrangian adjusted to cancel Eq. (3.50)
exactly. In spacetime dimensions d ≥ 4, the second-order diagram becomes
ultraviolet divergent as well, and a mass counterterm c2σ

2(x) must be added
to the Lagrangian in order to obtain a finite result. We will discuss this
renormalization from a slightly more general perspective in the next section.

We can use the explicit expressions to demonstrate that the low-order
Born approximations are equivalent to corresponding Feynman diagrams,
without any ambiguous finite parts, when identical regularization prescrip-
tions are employed. For simplicity, let us concentrate on the lowest order
(tadpole) diagram. The formula for the Feynman graph was already deter-
mined in dimensional regularization, cf.Eq. (3.50) above. It must now be
compared to the contribution of the first Born approximation to the vacuum
energy, computed in dimensional regularization as well. Since there are never
any bound states in the Born series, Eq. (3.27) implies

E
(1)
BA =

∞∑
�=0

D(�)
∫ ∞

0

dk

2π
(ω −m)

dδ
(1)
� (k)
dk

. (3.52)

The subtraction of the rest mass m from the scattering energy avoids pos-
sible infrared divergences; it is justified by Levinson’s theorem, Eq. (2.50).
The degeneracy factor D(�) is given in Eq. (3.20) above. The first Born
approximation to the phase shift can be worked out explicitly in n spatial
dimensions,

δ
(1)
� (k) = −π

2

∫ ∞

0

Jn
2 +�−1(kr)2 σ(r)r dr . (3.53)

We insert this formula in Eq. (3.52) and use the Bessel function identity

∞∑
�=0

(2q + 2�)Γ (2q + �)
Γ (�+ 1)

Jq+�(z)2 =
Γ (2q + 1)
Γ (q + 1)2

(z
2

)2q

(3.54)

for q = n
2 − 1. The sum over channels in Eq. (3.52) can then be taken in

closed form,

E
(1)
BA = − 〈σ〉

2(4π)
n
2 Γ
(

n
2

) (n− 2)
∫ ∞

0

(ω −m)kn−3 dk . (3.55)
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Finally, the k-integral can be calculated in the convergence domain 0 < n < 1
and then analytically continued in n,

∫ ∞

0

(ω −m)kn−3 dk = −m
n−1

4
√
π
Γ

(
1− n

2

)
Γ

(
n− 2

2

)
. (3.56)

Combining Eqs. (3.55) and (3.56) then coincides exactly with Eq. (3.50).7

Similar results can also be proved for fermions [17–20]. Our starting point
is the free Dirac equation in n spatial dimensions,

(−iα · ∂ + βm)Ψ = HΨ = ωΨ . (3.57)

The spinor Ψ has 2Nd components and accordingly the Dirac matrices αj and
β have 2Nd × 2Nd elements, where Nd = 2(n−1)/2 for n odd and Nd = 2n/2

for n even. We will generalize the case of n odd, though our results will not
depend on this choice. We choose the basis

β =
(

1Nd×Nd
0

0 −1Nd×Nd

)
and αj =

(
0 Λj

Λj 0

)
j = 1, . . . , n .

(3.58)
The Clifford algebra is obtained by demanding the anti-commutator
{Λi, Λj} = 2δij for theNd×Nd matrices Λj . In analogy to the spin generators
in n = 3 we define the commutator

[Λi, Λj ] = 2iΣij , (3.59)

which obeys the SO(n) commutation relation

[Σij , Σkl] = i (δikΣjl + δjlΣik − δilΣjk − δjkΣil) . (3.60)

Furthermore, we define the orbital angular momentum operator

Lij = −i (xi∂j − xj∂i) , (3.61)

which also satisfies the SO(n) algebra

[Lij , Lkl] = i (δikLjl + δjlLik − δilLjk − δjkLil) . (3.62)

We can then put these together to form the total spin operator

Jij = Lij +
1
2
Σij , (3.63)

which commutes with the Hamiltonian: [H,Jij ] = 0. Having obtained the
algebra, we next need to find the Casimir eigenvalues of

L2 =
1
2

∑
i,j

L2
ij , Σ2 =

1
2

∑
i,j

Σ2
ij , and J2 =

1
2

∑
i,j

J2
ij . (3.64)

7 A factor 1
2

was omitted in Eqs. (A.17) and (A.19) of Ref. [17].
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The eigenvalues of L2 are those of SO(n), �(� + n − 2). To find Σ2, we
consider its trace, which is just the number of independent matrices Σij ,
1
2n(n − 1). Then to obtain the Casimir eigenvalue of J2, all we need to find
is 〈L · Σ〉 = 〈12

∑
i,j LijΣij〉. We use the second-order equations obtained

from Eq. (3.57), which are generalized Bessel equations. We first remark
that r̂ · Λ has zero total spin ([r̂ · Λ, Jij ] = 0) and eigenvalue � = 1 with
respect to L2. Therefore, the appropriate spinor with definite parity can be
parameterized as

Ψ =
(

if(r)Yl,s,j

g(r) (r̂ ·Λ)Yl,s,j

)
, (3.65)

where Yl,s,j denote generalized spinor spherical harmonics. The radial func-
tions obey the coupled first-order equations[

∂r +
n− 1 +R

2r

]
g(r) = (m− ω)f(r),

[
∂r +

n− 1−R
2r

]
f(r) = (m+ ω)g(r), (3.66)

where R = 〈L ·Σ〉+ n− 1 contains the desired eigenvalue. We can decouple
these equations to obtain second-order equations for f(r) and g(r). By de-
manding that f(r) and g(r) obey generalized Bessel equations with orbital
angular momentum � and �′, respectively, we find

R = 1± (n− 2− 2�) and R = −1± (n− 2 + 2�′) . (3.67)

In view of the properties of r̂ ·Λ mentioned above we have �′ = �± 1. Hence
the two relations in Eq. (3.67) are consistent if

R = n+ 2�− 1 for �′ = �+ 1 and R = 3−n− 2� for �′ = �− 1 .
(3.68)

Putting these results together we find the Casimir eigenvalue

J2 = �(�+ n− 2) +
n(n− 1)

8
+
{
�, �′ = �+ 1
2− n− �, �′ = �− 1

. (3.69)

Defining j = 1
2 (�+ �′) yields

J2 =
(
j − 1

2

)(
j + n− 3

2

)
+
n(n− 1)

8
(3.70)

for both cases. The above definition of j also ensures that (as for n = 3) there
are two independent solutions for a given j: (i) � = j + 1

2
, �′ = j − 1

2
and (ii)

� = j − 1
2 , �

′ = j + 1
2 . These solutions have opposite parity.

Finally, we have to find the degeneracy factor, DF (j), for spinor fields.
We use two trace relations that are simple in the basis appropriate for Σij

and Lij . Written in the basis for Jij they connect different representations
and provide information about the degeneracy factor. We have
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j=�+ 1
2∑

j=�− 1
2

DF (j)(R(j)− n+ 1) = 0 (3.71)

and
j=�+ 1

2∑
j=�− 1

2

DF (j) = NdD(�), (3.72)

where we have defined DF (−1
2) = 0, independent of n. The first condition is

nothing but the tracelessness of 〈L · Σ〉 while the second gives the number
of states for a given orbital angular momentum �, with D(�) taken from
Eq. (3.20). Equation (3.71) can be re-expressed as

DF

(
�+

1
2

)
=
n+ �− 2

�
DF

(
�− 1

2

)
, (3.73)

which after substitution into Eq. (3.72) yields the final result

DF (j) = Nd

(
j +

1
2

)
Γ (n+ j − 3

2 )
Γ (n− 1)Γ (j + 3

2
)
. (3.74)

Equation (3.73) represents a recursion relation between DF (j) and DF (j+1)
that can straightforwardly be shown to be satisfied by the degeneracy factor
of Eq. (3.74). We note that as n → 1, Eq. (3.74) gives zero in all channels
except j = 1

2 , where it is one. As in the bosonic case, this limit gives the
reduction to the positive and negative parity channels in one dimension.

For n spatial dimensions, the fermion generalization of Eq. (3.53) requires
us to sum over parity channels. We find

δ
(1)
n,j(k) = −π

2

∫ ∞

0

drσ(r)r
(
Jn

2 +j− 3
2
(kr)2 + Jn

2 +j− 1
2
(kr)2

)
(3.75)

for k =
√
ω2 −m2. The leading Born approximation to the Casimir energy

is then given by

ΔE(1)
n [φ ] = − 1

π

∫ ∞

0

dk(
√
k2 +m2 −m)

∑
j

DF (j)
DF δ

(1)
n,j

dk
. (3.76)

Summing over all channels we find the full first order Born approximation to
the phase shift

δ(1)n (k) =
∑

j= 1
2 , 3

2 ...

DF (j)δ(1)n,j(k)

= −π
2

∫ ∞

0

drσ(r)r
∑

j= 1
2 , 32 ...

DF (j)
(
Jn

2 +j− 3
2
(kr)2 + Jn

2 +j− 1
2
(kr)2

)
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= −π
2

∫ ∞

0

drσ(r)rDF

∑
�=0,1,2...

(
(�+ 1

2
)Jn

2 +�−1(kr)2

+ DF (�− 1
2)Jn

2 +�−1(kr)2
)

= −π
2

∫ ∞

0

drσ(r)r
∑

�=0,1,2...

NdD(�)Jn
2 +�−1(kr)2 . (3.77)

Using Eq. (3.54) again with q = n
2 − 1, we sum over � and obtain for the

tadpole part of the Casimir energy

ΔE(1)[φ ] = 2Nd
〈σ〉

(4π)
n
2 Γ
(

n
2

) (n− 2)
∫ ∞

0

(ω −m)kn−3 dk, (3.78)

where 〈σ〉 is the same as in the bosonic case, Eq. (3.51). The k-integral can
be calculated in the vicinity of n = 1

2 and then analytically continued. The
result is given in Eq. (3.56). Hence we find

ΔE(1)[φ ] = −2Nd
〈σ〉

(4π)
n+1

2

Γ

(
1− n

2

)
mn−1, (3.79)

which is exactly what we obtain using standard dimensional regularization
for the tadpole diagram in n+ 1 spacetime dimensions.

To summarize, we have shown—for the first non-trivial order at least—
that the low-order Feynman diagrams and the corresponding Born approxi-
mations give manifestly identical results. If we tacitly assume that the theory
is dimensionally regulated, the subtraction of the Born terms is thus exactly
compensated by adding in the corresponding low-order diagrams. This is the
essential content of Eqs. (3.22) and (3.27).

3.6 Some Remarks on Renormalization

In the first chapter and also in the last section, we have seen examples of
how renormalization works in the spectral approach. The method of Born
subtraction shifts the ultraviolet divergences completely into Feynman dia-
grams, which can be renormalized by counterterms in the traditional way.
The literature on renormalization in perturbation theory is quite extensive
and we do not intend to give a detailed treatment here. Instead, we want
to emphasize some general issues that will help to clarify the nature of the
divergences appearing in quantum field theory calculations. The interested
reader may consult Ref. [21] for a comprehensive account of renormalization
theory.

The basic idea of renormalization is to extract the short-distance diver-
gences in matrix elements (Green’s functions) of quantum fields and absorb
them in the physical input parameters (couplings, masses, and fields) of the
starting theory. In this way, the separation of scales which is at the heart of
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all physical theories can be maintained even in a quantum world: Without
renormalization, the contribution from hard virtual particles in loop diagrams
would completely dominate the physical quantities of interest. But this ul-
traviolet contribution is more or less universal and thus contains little or no
information on the specific model at hand. After renormalization, the physi-
cal quantities of interest (bound state energies, phase shifts, masses, etc.) at
a low energy are determined by input parameters defined at the same low
scale.

For example, for the boson model in Eq. (3.1), the renormalization of the
tadpole diagram, Eq. (3.50), is sufficient to render the vacuum energy ultravi-
olet finite as long as we work in fewer than four spacetime dimensions. In the
no-tadpole scheme, we choose the counterterm to cancel the tadpole graph
completely, requiring that the VEV 〈σ〉 not be modified by the quantum cor-
rections from ϕ. By holding the physical input quantity 〈σ〉 fixed, we can
calculate the vacuum energy as a function of the renormalized parameters,
without pollution from the high-energy physics at the cutoff scale.

There is, of course, an apparent arbitrariness in the finite parts of the
counterterms, and one may think näıvely that the predictive power of the
model is lost. This is not so: A change in the renormalization prescription
will change the physical quantities, but it will also affect the input param-
eters of the theory. The observables as a function of the input parameters
should remain unaffected—this is the content of the renormalization group.
Technically, the counterterms combine with the renormalized parameters in
the starting Lagrangian to compose the bare parameters defined at the cutoff
scale. These bare quantities are then independent of the separation into renor-
malized quantities and counterterms that are determined from the renormal-
ization prescription.

The same arguments can be made even clearer in four dimensions, where
the second-order diagram diverges. Expanding the functional determinant to
quadratic order in the background gives the second diagram on the right-hand
side of Eq. (3.49). We find it to be

E
(2)
FD =

1
2

∫
dnp

(2π)n
σ̃(p)Π(p2) σ̃(−p) , (3.80)

where σ̃(p) is the Fourier transform of the background potential. The vacuum
polarization is ultraviolet divergent as d→ 4,

Π(p2) = −1
2

∫
ddk

(2π)d

1
k2 −m2

1
(k + p)2 −m2

∣∣∣∣
p0=0

. (3.81)

Frequently the so-called on-shell renormalization prescription is used,

Π(p2) −→ Π(p2)−Π(M2) . (3.82)

With this substitution, the vacuum polarization remains finite when d → 4.
When σ is a dynamical field, Π is proportional to its inverse propagator.
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Hence the renormalization, Eq. (3.82), suggests that M2 be taken as the
physical mass of the σ particle. Indeed, the subtraction Eq. (3.82) is equiva-
lent to adding the mass counterterm

1
2

∫
dnp

(2π)n
σ̃(p)Π(M2) σ̃(−p) = c2

∫
dnxσ(x)2 (3.83)

to Eq. (3.1). Like the VEV 〈σ〉, the σ-mass M2 is a physical input parame-
ter to the theory, and after renormalization the finite vacuum energy can be
expressed as a function of these low-energy input quantities alone. Renormal-
ization group arguments demonstrate the scheme independence of the finite
result: changing the scale M2 will also change the other parameters explic-
itly and Evac implicitly. This change occurs in such a way that the relation
between Evac and its input parameters is unaffected.

From a technical point of view, it seems very surprising that the short
distance divergences universally reduce to simple monomials in the fields
and their derivatives (with unknown divergent prefactors), particularly be-
cause the evaluation of individual diagrams seems to indicate the opposite:
Loop diagrams of higher order in � have overlapping subdivergences that
typically depend non-analytically on the external momentum p. The cor-
responding counterterms are thus complicated functions containing an in-
finite number of derivatives. The resolution is that the counterterms must
be viewed as a genuine part of the Lagrangian, i.e.,lower order countert-
erms must be inserted in higher order diagrams as well. The BPHZ formal-
ism [22, 23] and Zimmermann’s forest formula [24] prove that such countert-
erm insertions exactly cancel the subdivergences in higher order Feynman di-
agrams [24]. The result is only an overall divergence where all loop momenta
become large simultaneously. For this situation, Weinberg has shown [25]
that this remaining overall divergence amounts to simple polynomials in the
external momenta, with the order of the polynomial determined by power
counting.

Thus, the counterterms in any quantum field theory are local monomials
in the fields and their derivatives, and as such correspond exactly to the terms
that are typically present in the starting Lagrangian. The only difference
between a renormalizable and a non-renormalizable model rests in the fact
that the order of the counterterm polynomials is bounded in the former case,
while it can become arbitrarily large in the latter. In renormalizable models,
we can absorb the divergences in a few physical input parameters, while
non-renormalizable theories require more and more independent parameters,
so that the predictive power is indeed lost unless an additional criterion is
established to truncate the counterterm series.8

To summarize, the technique of Born subtraction in the spectral method
allows for a completely conventional renormalization in terms of Feynman
8 For example, the prescribed power of the external momenta curbs the number

of possible counterterms in chiral perturbation theory [30–32].
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diagrams. The counterterms are fixed by physical requirements on the input
parameters (masses, VEV, coupling constants, etc.) in the background field
sector. In a renormalizable model, the finite ambiguities in these parame-
ters do not reduce its predictive power, since the relation between physical
quantities and the parameters is an unambiguous prediction of the theory.
No such assertion can be made for ad hoc counterterms, such as those that
some approaches have introduced to remove divergences that are not related
to universal short-distance physics. Ad hoc surface counterterms in Casimir
type of problems, for instance, are only introduced for special, mostly singu-
lar forms of the background σ; for regular σ, they must be discarded to give
smooth backgrounds a finite energy. No equivalent to the renormalization
group exists to ensure the scheme independence and predictive power of such
approaches. We will discuss the role of renormalization and quantum field
theory in Casimir type of problems in more detail in Chap. 7.

3.7 Quantum Energy of Interfaces

So far, we have focused on the quantum energy of soliton-like background
configurations σ(r) with rotational symmetry. There is, however, another
important class of extended objects to which the spectral method applies:
configurations that are symmetric in a n-dimensional subspace, but other-
wise independent of the m = d− 1−n remaining spatial coordinates, so that
the field configuration is translationally invariant in these m coordinates.9

Examples include domain walls in lattice field theories [26, 27], branes in
string theory and extradimensional gravity [28], large plates in Casimir prob-
lems, and flux tubes (vortices) in gauge theories and statistical mechanics.
Generically, we refer to such objects as interfaces.

The spectral method we have developed for soliton configurations corre-
sponds to m = 0. The extension to interfaces (m > 0) does not increase the
complexity of the problem [29]: The quantum energy is still determined by
the scattering data in the n non-trivial directions, and the cumulative effect
of the m extra dimensions is only a simple modification of the energy factor
ω =
√
k2 +M2 in the phase shift formula, Eq. (3.27). Of course, an interface

in m+n dimensions cannot exactly be treated as a soliton in the n non-trivial
directions, since the extra space dimensions generally induce additional ul-
traviolet divergences. We will address this issue in detail below. For different
approaches to this problem (in the case n = 1), cf.Refs. [11, 33].

In the course of the analysis, it will become evident that the consistency of
the underlying field theory requires certain conditions on the n-dimensional
scattering data. These are actually the finite energy sum rules generalizing
Levinson’s theorem, discussed in Sect. 2.4, cf.Eq. (2.47). We will see that
integrating out the m translationally invariant coordinates induces apparent

9 As before, d is the overall number of spacetime dimensions.
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singularities, each of which is proportional to a combination of a sum over
bound states and an integral over phase shifts. The sum rules show that this
combination vanishes, removing the singularity. In analogy to the spectral
method for m = 0, the remaining ultraviolet divergences are renormalized by
local counterterms.

For a static soliton in n dimensions described by a classical background
σ(x), the quantity of interest is the quantum energy, En[σ], which is the
effective action per unit time. In the case of interfaces, the relevant quantity
is Em,n[σ] = Em,n[σ]/Vm, the energy per unit volume of the extra dimensions.
Physically, Em,n looks like an interface tension when viewed from the outside
and like an induced cosmological constant intrinsically.

3.7.1 The Interface Formula

To be specific, the model for the small-amplitude fluctuations is taken of
the type (3.4), for either a real or complex boson or a Fermi field ψ with a
Yukawa coupling λψ̄σψ. To avoid confusion, the mass of the fluctuating field
will be denoted byM . The n non-trivial coordinates on which the background
depends will be called x, and the remaining extra directions are called y. The
(static) field equation is now easily seen to separate, so that the solutions
reflect the translational invariance with respect to y,

ϕ(x,y) = eip·y ϕ̃(x) , (3.84)

where p ∈ Rm is the momentum conjugate to the extra dimensions y. The
reduced wavefunction ϕ̃(x) is subject to a Schrödinger-type equation in m
spatial dimensions with the potential generated by the background σ(x).
The spectral method requires rotational symmetry in the n-dimensional sub-
space of non-trivial coordinates x, so that the non-trivial part ϕ̃(x) of the
wavefunction is characterized by the radial momentum k and angular mo-
mentum � corresponding to the SO(n) symmetry. In the n-dimensional sub-
space we have scattering and bound state solutions with energies

√
M2 + k2

and
√
M2 − κ2

�,j , respectively. These correspond to the energies of the full
quantum state

ω(k, p) =
√
M2 + k2 + p2 and ω�,j(p) =

√
M2 + p2 − κ2

�,j ,

where p = |p|. The asymptotic behavior of ϕ̃(x) is characterized by a phase
shift δ�(k) for a continuum state or a damping factor exp(−κ2

�,j |x|) for a
bound state, which in both cases is solely determined from the field equation
in the non-trivial subspace. For each such state there is an infinite set of states
in the full interface problem indexed by p. We want to find the associated
density of states. Since there are no interactions in these directions, we have
the free density of states for the interval [p,p + dp], which can be read off
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from Eq. (1.9)10 as Vm/(2π)m where Vm =
∫
dmy. Thus the total density of

states in the full interface problem factorizes

ρ�(p, k) =
1
π

dδ�(k)
dk

Vm

(2π)m
and ρ�,j(p) =

Vm

(2π)m
, (3.85)

for scattering and bound states of ϕ̃(x), respectively.
The phase shift formula (3.27) can now be applied directly to the interface

by integrating over p. We consider the energy per unit transverse volume,
which becomes

Em,n =
Evac

Vm
= ±

∫
dmp

(2π)m

∑
�

Dn(�)
[∫ ∞

0

dk

2π
(ω(k, p)− μ(p))

dδ�(k)
dk

+
1
2

∑
j

(
|ω�,j(p)| − μ(p)

)]
+
Ect

Vm
. (3.86)

The two signs refer to bosons and fermions, respectively. Note that the de-
generacy factor Dn(�) arises from the partial wave decomposition in the non-
trivial subspace, Eq. (3.20). Furthermore, a p-dependent mass term

μ(p) =
√
M2 + p2 (3.87)

has been subtracted to avoid spurious infrared divergences when Born sub-
tractions are required. Levinson’s theorem ensures that this subtraction is an
identity, which merely makes the infrared finiteness of the energy manifest.

So far, the counterterms necessary for renormalization have been indi-
cated, but neither the Born terms have been subtracted nor the correspond-
ing Feynman diagrams have been added back in. To begin this procedure, we
first subtract the Born approximation δ(1)� (k) from the phase shift δ�(k), and
add back in the contribution of the tadpole graph, E

(1)
FD . Combined with the

counterterm, Ect, this procedure yields the renormalized Feynman diagram11

E
(1)
FD . The energy per unit volume then takes the form

Em,n = ±
∫

dmp

(2π)m

∑
�

Dn(�)
[∫ ∞

0

dk

2π
(ω(k, p)− μ(p))

d

dk

[
δ�(k)− δ(1)� (k)

]

+
1
2

∑
j

(|ω�,j(p)| − μ(p))
]

+ E
(1)
FD + E ′

ct . (3.88)

Here E ′
ct refers to any additional counterterms that might be required to

renormalize higher order diagrams. In theories with only tadpole divergences
we have E ′

ct = 0.
10 The volume of the one-dimensional problem in that case is 2L.
11 With the usual no-tadpole renormalization scheme, the counterterm would cancel

the diagram completely, E (1)
FD = 0.
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For the simple boson or Yukawa models in less than three (total) space
dimensions, d − 1 = m + n < 3, the tadpole counterterm is sufficient to

renormalize the energy. Hence in Eq. (3.88) the p-integral and E
(1)
FD must

separately be finite. After the integration over the trivial momentum p, we
find

Em,n = ∓
Γ (−1+m

2 )

2(4π)
m+1

2

∑
�

Dn(�)
[∫ ∞

0

dk

π
(ωm+1(k, 0)−Mm+1)

d

dk
[δ�(k)]1

+
∑

j

(|ω�,j(0)|m+1 −Mm+1)
]

+ E
(1)
FD . (3.89)

This result presents a puzzle: if we take m → 1, say with n = 1, E1,1 ap-
pears to diverge because of the pole in the gamma function. The divergence
must be spurious since there is no counterterm for it. Hence the quantity
in brackets must vanish for m = 1. Furthermore, since each partial wave is
independent, each term in the sum must vanish separately. Thus consistency
of renormalization theory implies a scattering sum rule which can be cast
into the form ∫ ∞

0

dk

π
k2 d

dk

[
δ�(k)− δ(1)� (k)

]
−
∑

j

(κ�,j)2 = 0 . (3.90)

This is the first generalization of Levinson’s theorem, the case p = q = 1
in Eq. (2.47). Here it appears as a consistency condition in quantum field
theory. Using this sum rule, the limit m → 1 is harmless and we obtain the
first instance of an interface formula [29]

E1,n = ± 1
4π

∑
�

Dn(�)
[∫ ∞

0

dk

π
k log

ω(k)2

μ2

[
δ�(k)− δ(1)� (k)

]

− 1
2

∑
j

ω2
�,j log

ω2
�,j

μ2
+ (κ�,j)2

]
+ E (1)

FD , (3.91)

where ω(k) ≡ ω(k, 0) =
√
M2 + k2 and ω�,j =

√
M2 − κ2

�,j . The arbitrary

scale μ in the logarithms cancels because of the sum rule, Eq. (3.90), and
Levinson’s theorem. As advertised earlier, the final expression for the in-
terface tension depends only on the scattering data from the n non-trivial
dimensions. It is therefore not fundamentally more complex than the usual
phase shift approach for the vacuum polarization energy.

To extend to higher dimensions, we need to make a second Born sub-
traction and add back the Feynman two-point function, which will suffice for
bosonic models in m + n < 5 dimensions. This procedure can be continued
indefinitely—subtracting higher Born approximations and adding back the
appropriate Feynman diagrams, which are renormalized by local countert-
erms.



3.7 Quantum Energy of Interfaces 59

To avoid infrared problems12 for n = 1, we first subtract Eq. (3.90) di-
vided by 2μ(p) from Eq. (3.88). The net effect is to replace [ω(k, p)− μ(p) ]
by [ω(k, p) − μ(p) − k2/2μ(p) ] under the k-integral. Next, we subtract the
second Born approximation as usual and add back in the two-point Feyn-
man diagram. Again, the integration over the trivial momentum p can be
performed with the result

Em,n = ∓
Γ (−1+m

2 )

2(4π)
m+1

2

∑
�

Dn(�)

{∑
j

(
|ω�,j |m+1 −Mm+1 +

m+ 1
2

κ2
�,jM

m−1
)

+
∫ ∞

0

dk

π

[
ω(k)m+1 −Mm+1 − m+ 1

2
k2Mm−1

]

× d

dk

[
δ�(k)− δ(1)� (k)− δ(2)� (k)

]}
+ E

(2)
FD . (3.92)

By construction the coefficient of the gamma function vanishes as m → 1.
The limit m→ 1 gives

E1,n = ± 1
4π

∑
�

Dn(�)
[∫ ∞

0

dk

π
k log

ω(k)2

μ2

[
δ�(k)− δ(1)� (k)δ(2)� (k)

]

− 1
2

∑
j

ω2
�,j log

ω2
�,j

μ2
+ (κ�,j)2

]
+ E

(2)
FD . (3.93)

Equations (3.91) and (3.93) are identical for values of n where only one Born
subtraction is necessary. The contribution of the second Born approximation
has been replaced by the second-order Feynman diagram. However, Eq. (3.93)
can be continued to values of n where two subtractions are necessary.

As before, the finiteness of Eq. (3.93) as m→ 3 implies another sum rule,
∫ ∞

0

dk

π
k4 d

dk

[
δ�(k)− δ(1)� (k)− δ(2)� (k)

]
−
∑

j

(κ�,j)4 = 0 , (3.94)

which corresponds to Eq. (2.47) for p = q = 2. In the limit m → 3 we then
obtain,

E3,n = ± 1
32π2

∑
�

Dn(�)

[
−
∫ ∞

0

dk

2π
4k ω(k)2 log

ω(k)2

μ2
[δ�(k)]2 (3.95)

+
1
2

∑
j

(
(ω�,j)4 log

(ω�,j)2

μ2
+ μ2(κ�,j)2 −

1
2
(κ�,j)4

)]
+ E (2)

FD .

12 See Ref. [34] for a thorough discussion of the infrared anomalies that occur for
n = 1.
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The generalization of these methods to higher dimensional interfaces m > 3
is straightforward [34]. Since the scattering data that enter the interface for-
mula are the same as in the non-interface case, Eq. (3.27), the integration
contour can again be rotated to the imaginary axis, as in Fig. 3.1. This for-
mulation does not require explicit bound state contributions and is the most
concise and compact version of the interface formula. For instance, a string-
like interface in 3+1 spacetime dimensions corresponds to n = 2 and m = 1.
For the simple boson model, the energy per unit length of the string becomes

E1,2 =
∞∑

�=0

D2(�)
∫ ∞

M

dt

4π
t [ν�(t)]2 +

2∑
i=1

E
(i)
FD + ECT . (3.96)

This result should be compared to the expression (3.26), which is valid in the
absence of extra dimensions (m = 0). The net effect of the extra dimension
is simply to change the kinematical factor under the integral—reflecting the
additional divergences that arise in higher dimensions—while the key dynam-
ical ingredient ν�(t) and thus the complexity of the problem is unaffected. We
will study applications with plane-like interfaces (m = 2) that arise in the
context of the Casimir effect in Chap. 7.
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4 Applications in One Space Dimension

In this chapter we will apply the techniques we have developed to compute
vacuum polarization energies for various systems.

We start by considering models in d = 1 + 1 dimensions. Systems with
one space dimension provide a particularly simple testing ground for our
approach. We will also see that they contain subtleties that our approach is
well-suited to address. In later chapters we will thoroughly investigate models
in three spatial dimensions.

4.1 Vacuum Polarization Energy in Exactly Solvable
Models

The two most commonly studied models in one space dimension happen
to correspond to exactly solvable scattering problems. We will start with
these special systems because they enable us to present the full calculation
in explicit detail. First we consider the φ4 kink, with Lagrangian density

L =
1
2

(∂μ φ) (∂μφ)− λ

4

(
φ2 − M2

2λ

)2

, (4.1)

which has degenerate minima at φ0 = ±M/
√

2λ. In the perturbative sector
the fluctuations about either minimum describe bosons of mass M . The kink
is a non-perturbative static solution to the field equations,

φK(x) =
M√
2λ

tanh
(
Mx

2

)
, (4.2)

interpolating between these two vacua at x = ±∞. Sending x → −x yields
the anti-kink solution. We consider small-amplitude fluctuations, η, about
the kink configuration by parameterizing the field variable as φ = φK + η
and expanding the Lagrangian to quadratic order in η, which yields the small
oscillation equation

− ∂2η

∂t2
=
[
− ∂2

∂x2
+M2 − 3M2

2
sech 2

(
Mx

2

)]
η . (4.3)
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The potential

V2(x) = −3M2

2
sech 2

(
Mx

2

)
(4.4)

is the n = 2 member of the Pöschl–Teller family [1] of exactly solvable po-
tentials,

Vn(x) = −
(
n+ 1
n

)
M2 sech 2

(
Mx

n

)
, (4.5)

where n = 0, 1, 2, . . . and n → 0 yields the free theory V0(x) ≡ 0. These
potentials are symmetric and reflectionless and the corresponding bound and
scattering state wavefunctions are known explicitly. While symmetry of the
potential guarantees that the 2× 2 S-matrix for the symmetric and antisym-
metric channels is diagonal, reflectionlessness requires that it be proportional
to the identity matrix. Thus the symmetric and antisymmetric phase shifts
must be equal. They are given by

δS(k) = δA(k) =
n∑

j=1

arctan
(
jM

kn

)
, (4.6)

and corresponding bound states at

k2 = −j
2M2

n2
, (4.7)

with j = 0, 1, 2, . . . , n. We note that in order to reconcile the equality of
the phase shifts with the different forms of Levinson’s theorem in the two
channels, cf. Eqs. (2.66) and (2.50),

δS(0)− δS(∞) = π

(
nS −

1
2

)

δA(0)− δA(∞) = πnA , (4.8)

all reflectionless potentials (including the free particle) must have a
“half-bound” threshold state, given here by the case j = 0.

By taking
η(x, t) = e−iωtηω(x) , (4.9)

with ω =
√
k2 +M2, we can use these results to analyze the solutions to

Eq. (4.3). There is a zero mode with ω0 = 0 (for j = 2) and an additional
bound state with ω2

1 = 3M2

4 (for j = 1). The corresponding wavefunctions
are

η0 =

√
3M
8

sech 2

(
M

2
x

)

η1 =

√
3M
4

tanh
(
M

2
x

)
sech

(
M

2
x

)
, (4.10)
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where we have adopted the normalization conventions that arise in the stan-
dard construction of solutions for Pöschl–Teller potentials [1]. The zero mode
arises because of translational invariance of the kink solution, η0 ∝ ∂φK

∂x .
The two linearly independent continuum solutions with wave vector k

are [2]

ηr(x) = ηl(x)∗ =
eikxM2

ω
√

4k2 +M2
(4.11)

×
[
3
2

tanh2

(
M

2
x

)
− 1

2
− 2k2

M2
− i3k

M
tanh

(
M

2
x

)]
,

corresponding to right- and left-moving waves, respectively. They scatter
without reflection. We can then form symmetric and antisymmetric solutions

ηS(x) =
1
2

(ηr(x) + ηl(x)) ; ηA(x) =
1
2i

(ηr(x)− ηl(x)) . (4.12)

From these results, we obtain the phase shifts

δkink
S (k) = δkink

A (k) = arctan
(
M

k

)
+ arctan

(
M

2k

)
= arctan

(
3Mk

2k2 −M2

)
.

(4.13)
In Sect. 2.4.3 we have observed that Eq. (2.66) implies nS = 1

2
in the case

of no interaction because there is a “half-bound” state at threshold. This state
must be included in the expression for the vacuum polarization energy in the
absence of the kink, so that the full bound state contribution to the kink
vacuum polarization energy should actually be expressed as the difference
1
2

∑
i ωi−M

4 . To circumvent this technical complication, it is useful to employ
Levinson’s theorem and rewrite the (unrenormalized) vacuum polarization
energy in terms of the binding energies,

ΔE =
1
2

∑
i

(ωi −M) +
∫
dk

2π
(ω −M)

d

dk
(δS(k) + δA(k)) . (4.14)

The half-bound states at threshold then do not appear explicitly in this for-
mulation.

To renormalize this expression we have to subtract (at least) the leading
term in the Born series from the phase shifts, using the results of Chap. 2.
We use Eq. (3.53) with n = 1 and then choose � = 0 and � = 1 to obtain
results for the symmetric and antisymmetric channels, respectively,

δ
(1)
S (k) = −1

k

∫ ∞

0

V (x) cos2 kx dx

δ
(1)
A (k) = −1

k

∫ ∞

0

V (x) sin2 kx dx . (4.15)

The sum of these two results is just proportional to the integral over space
of the potential from the differential equation (4.3), 〈V 〉 = 1

2

∫∞
−∞ dxV (x) =

−3M 2, which we have normalized by analogy with the radially symmetric
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case. Because the first-order Feynman diagram is completely local, it exactly
cancels the counterterm in the no-tadpole renormalization scheme, and the
renormalized vacuum polarization energy becomes

ΔE =
1
2

∑
j

(ωj −M)−
∫ ∞

0

dk

2π
k

ω(k)

(
δA(k) + δS(k) +

〈V 〉
k

)
. (4.16)

Note that the Levinson subtraction in Eq. (4.14) also eliminated a potential
infrared divergence associated with the Born subtraction. The resulting in-
tegral can be straightforwardly computed from the phase shifts, Eq. (4.13),
and the vacuum polarization energy of the kink in the no-tadpole scheme
becomes

ΔE = M

(
1

4
√

3
− 3

2π

)
, (4.17)

which is the standard result given in Ref. [3].
We can repeat this analysis for the sine-Gordon model, for which the

Lagrangian is

LSG =
1
2
(∂μφ)2 +

M4

λ

[
cos

(√
λφ

M

)
− 1

]
. (4.18)

The corresponding soliton solution reads [2]

φSG =
4M√
λ

arctan
(
e−Mx

)
, (4.19)

and the antisoliton solution is given by sending x → −x. In both cases the
small oscillation potential is again of the form in Eq. (4.5), but now with
n = 1. We have scattering wavefunctions

ηr(x) = ηl(x)∗ =
1
ω

eikx (k + iM tanhMx) , (4.20)

and a single zero mode bound state with k2 = −M2,

η0 =

√
M

2
sechMx . (4.21)

Its existence is again guaranteed by translation invariance of the underlying
theory. The phase shifts

δSG
S (k) = δSG

A (k) = arctan
(
M

k

)
(4.22)

are again equal in the two channels, requiring the existence of a half-bound
threshold state in the antisymmetric channel. We summarize the bound states
in these two models in Table 4.1.
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Table 4.1 Bound states (b.s.) and half-bound states in various d = 1+1 dimensional
models

Sym. ch. Anti-sym. ch.
true b.s. half b.s. true b.s. half b.s.

V ≡ 0 0 1 0 0
SG 1 0 0 1
kink 1 1 1 0

Having gathered all this information, we can compute the vacuum polar-
ization energy of the sine-Gordon soliton as we did for the kink in Eq. (4.16).
We find ΔESG = −M/π in the no-tadpole renormalization scheme, again in
agreement with standard results [2].

4.2 Fermions in One Spatial Dimension

Fermions do not have classical analogs and thus there is no fermionic soliton
whose vacuum polarization we could compute. However, fermions can couple
to boson field configurations that vary in space. Such boson fields then induce
a fermion vacuum polarization energy. In this section we will compute such
energies using techniques we have developed. To do so, we will transform
the coupled first-order differential equations for fermions into second-order
differential equations for the individual components of the fermion spinors.
In preparation for this calculation, we first explain the computation of the
fermion scattering data in one spatial dimension.

4.2.1 Parity-Invariant Background Fields

We begin by considering fermions coupled to a doublet of static background

fields φ(x) =
(
φ1(x)
φ2(x)

)
in a way that preserves parity invariance. The fermion

Lagrangian density is

LF =
1
2
(
i
[
Ψ̄ , ∂/ Ψ

]
−G

([
Ψ̄ , Ψ

]
φ1 + i

[
Ψ̄ , γ5Ψ

]
φ2

))
. (4.23)

Here G is the Yukawa coupling constant and we have used commutators
to ensure that discrete symmetries are properly maintained, as we discuss
further in Sect. 5.2. We choose the representation γ0 = σ2, γ1 = iσ3, and
γ5 = σ1 for the Dirac matrices (where σi are the Pauli matrices), so that the
Dirac Hamiltonian becomes

H[φ ] = iσ1
d

dx
+Gσ2φ1(x) +Gσ3φ2(x) . (4.24)
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When φ has a non-zero vacuum expectation value, the mass of the fermion is
M = G

√
〈φ1〉2 + 〈φ2〉2. We assume that the boson sector dynamics gives the

usual vacuum choice 〈φ1〉 = v and 〈φ2〉 = 0. Although the underlying fermion
theory is charge conjugation invariant, the Dirac Hamiltonian in the presence
of a fixed φ(x) is not, unless φ2 ≡ 0. It is therefore necessary to consider both
positive and negative-energy eigenvalues ω of the time-independent Dirac
equation

Hψ = ωψ . (4.25)

The associated second-order equations for the Dirac spinor, ψ ≡
(

f
g

)
, are

− f ′′ −Gφ′1f +Gφ′2(ω +Gφ2)−1(f ′ +Gφ1f) = (ω2 −G2φ2
1 −G2φ2

2)f

(4.26)
−g′′ +Gφ′1g −Gφ′2(ω −Gφ2)−1(g′ −Gφ1g) = (ω2 −G2φ2

1 −G2φ2
2)g .

In one spatial dimension, there are two channels for each energy. The
S-matrix is 2 × 2 dimensional and, in general, not diagonal. We simplify
this situation using parity invariance. By demanding that φ1 and φ2 are,
respectively, even and odd under coordinate reflection we ensure that the
Dirac Hamiltonian, Eq. (4.24), is invariant under parity,

[P,H] = 0, where P = γ0Π = σ2Π (4.27)

and Π is the coordinate reflection operator that transforms x to −x. Thus
we can choose a basis of parity eigenstates,

Pψ±(x) ≡ σ2ψ±(−x) = ±ψ±(x) , (4.28)

and replace the scattering problem on the line x ∈ [−∞,∞] by two scattering
problems on the half-line x ∈ [0,∞] corresponding to even and odd parity.
Equation (4.28) gives boundary conditions at x = 0 on the parity eigenstates:

ψ+(0) ∝
(

1
i

)
and ψ−(0) ∝

(
1
−i

)
. (4.29)

The solution to the Dirac equation on the half-line with either boundary
condition is unique up to an overall normalization. For x → ∞, this unique
solution can be written as a superposition of incoming (∝ e−ikx) and outgoing
(∝ eikx) waves. The coefficient of the outgoing wave relative to the incoming
wave defines the phase shift.

To implement this program, we introduce eigenstates of the free Dirac
Hamiltonian with energy ω,

ϕ0
+k(x) =

1
ω

(
ω

−k + iM

)
eikx

ϕ0
−k(x) =

1
ω

(
ω

k + iM

)
e−ikx , (4.30)
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where k = +
√
ω2 −M2. Next, we construct the eigenstates of the full in-

teracting Dirac Hamiltonian with energy ω that are asymptotic to ϕ0
±k as

x→∞,

ϕ+k(x) =

(
f(x)

i

ω +Gφ2(x)
(f ′(x) +Gφ1(x)f(x))

)
(4.31)

and

ϕ−k(x) =

(
f∗(x)

i

ω +Gφ2(x)
(f∗′(x) +Gφ1(x)f∗(x))

)
. (4.32)

Here f(x) is the solution to the real second-order equation for the upper
component, Eq. (4.26), subject to the boundary condition that f(x) → eikx

as x→∞. It is easy to verify that in the same limit ϕ±k(x)→ ϕ0
±k(x) since

the boson fields approach their vacuum values.
Since the even and odd parity channels decouple, the S-matrix is diagonal

in this basis. Its diagonal elements S± = e2iδ±(ω) can be defined through the
even and odd parity eigenstates of H,

ψ+(x) = ϕ−k(x) +
M − ik
ω

S+(ω)ϕ+k(x)

ψ−(x) = ϕ−k(x)− M − ik
ω

S−(ω)ϕ+k(x) . (4.33)

If we set the interaction to zero, φ assumes its vacuum value φ1 = v, φ2 = 0
and ψ+ (ψ−) reduces to the even (odd) parity solution to the free Dirac
equation with S± = 1, which explains the extra factor of M−ik

ω in Eq. (4.33).
To determine S± we use the fact that the eigenstates of Eq. (4.33) obey

Eq. (4.29). For the positive parity channel this condition yields

S+(ω) = −
(M + ik)

[
(ω −Gφ1(0))f∗(0)− f ′∗(0)

]
ω
[
(ω −Gφ1(0))f(0)− f ′(0)

] , (4.34)

and similarly for the negative parity channel

S−(ω) =
(M + ik)

[
(ω +Gφ1(0))f∗(0) + f ′∗(0)

]
ω
[
(ω +Gφ1(0))f(0) + f ′(0)

] . (4.35)

To compute the phase shifts efficiently and avoid 2π ambiguities, it is con-
venient to factor the free solution out of f(x) by writing f(x) = eikxeiβ(x,ω),
cf. Eq. (2.52). Then the phase shifts are given by1

δ±(ω) = −Reβ(0, ω)− arg
[
1 +

iβ′(0, ω) +G(φ1(0)− v)
∓ω +Gv + ik

]
, (4.36)

where the complex function β(x, ω) solves the differential equation

1 Since ω =
√

k2 + M2 = |ik + M | we have arg(ik + M) = 2arg(ik + M + ω).
Furthermore we recall that M = Gv.
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− iβ′′(x, ω) + 2kβ′(x, ω) + β′2(x, ω)−M2 +G2φ2
1(x) +G2φ2

2(x)−Gφ′1(x)
+

Gφ′2(x)
ω +Gφ2(x)

[
Gφ1(x) + i(k + β′(x, ω))

]
= 0, (4.37)

subject to the boundary conditions β(∞, ω) = β′(∞, ω) = 0. It is this equa-
tion that we solve numerically for a given background φ(x) to determine the
phase shifts, from which we then compute the vacuum polarization energy.
We will use these techniques to study soliton stabilization by fermion vac-
uum polarization energies in Sect. 4.4. First, however, we will carry out some
preparatory work needed to investigate supersymmetric models in d = 1 + 1
dimensions.

4.2.2 Fermions in the sine-Gordon Background

For fermion systems in one spatial dimension we often encounter background
configurations that give opposite signs in the mass term of the Dirac equation
at x → ±∞. Even though the two signs describe the same fermion, the
extraction of the scattering matrix in this case is non-trivial. We elaborate
on that issue in this section.

For example, in the notation of Eq. (4.23), the sine-Gordon (SG)-soliton
background reads

Gφ1(x) = M tanh(Mx) and φ2 = 0 , (4.38)

where M is the fermion mass. It is straightforward to verify that

ψ =
(

i
ω

[ik −M tanh(Mx)]
1

)
eikx (4.39)

solves the corresponding Dirac equation. However, this information is not
sufficient to determine the phase shifts δ±(ω) from Eqs. (4.34) and (4.35),
because the SG background field is not invariant under parity reflection, a
fundamental ingredient for the results of the previous section. Even though
the mass term in the Dirac Hamiltonian, Eq. (4.24), changes sign when pass-
ing from x = −∞ to x = +∞, it still describes a free fermion of mass M
in both asymptotic regimes. However, we cannot directly compare the wave-
functions and extract phase shifts since the two vacua at x = ±∞ are only
identified after a non-trivial chiral rotation.

To solve this problem, we generalize the configuration of Eq. (4.38) to

Gφ1(x) = M [1 + tanhM(x−R)− tanhM(x+R)] and φ2 = 0 , (4.40)

which is the superposition of an SG-soliton centered at x = R and an SG anti-
soliton at x = −R. This configuration is obviously invariant under parity and
we may employ Eq. (4.36) directly to determine the phase shifts. If R becomes
very large, interference effects between the solition and the anti-solition can
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be ignored and by charge conjugation symmetry we must assign half of the
resulting vacuum polarization energy to the soliton and the other half to the
antisoliton. As a result we can compute the sum of the fermion eigenphase
shifts in the SG model as exactly half of that for the configuration Eq. (4.40)
in the limit R→∞. To apply the techniques of the previous section we only
require the spinor in the regime x ≥ 0, in which case the effect of the anti-SG
at x = −R may be ignored. The solution

ψ =
( 1

ik−M (ik −M tanh [M(x−R)])
−iω

ik−M

)
eikx (4.41)

has the asymptotic behavior described in Eq. (4.31) and is thus suitable to
identify f(x). We find

f(0) = −M + ik

M − ik and f ′(0) = −ikM + ik

M − ik = ikf(0) , (4.42)

for sufficiently large R, and read off

β(0) = 2 arctan
(
k

M

)
− π and β′(0) = 0 . (4.43)

It is now straightforward to find the phase shifts from Eq. (4.36),

δ±(k) = π − 2 arctan
(
k

M

)
− arg

[
1− −2M
∓ω +M + ik

]
= arctan

(
M

k

)
.

(4.44)
Here we used that Gφ1(0) = −M in the limit R→∞ and v = M/G. Also, we
have used the momentum as the argument (instead of the energy ω) because
the configuration Eq. (4.40) induces a charge conjugation invariant fermion
spectrum. The phase shifts, Eq. (4.44), imply that the sum of the eigenphase
shifts for fermions in the single SG soliton background is

2∑
i=1

δ
(SG)
i (k) = arctan

(
M

k

)
. (4.45)

Using this result we can easily compute phase shifts of any other configura-
tion with opposite signs in the mass term by comparing it to the SG model.
This relative phase shift parameterizes the unitary transformation that maps
the state vector of such configurations onto that of the SG soliton. The subse-
quent unitary transformation that yields the state vector associated with free
fermions is parameterized by the phase shift in Eq. (4.45). Thus we merely
have to add these two phase shifts to determine the eigenphase shifts relative
to free fermions. Furthermore, from Eq. (4.39) we observe that in the SG
model the lower component is just a plane wave. Hence for any other prob-
lem with such an odd vacuum we may read off the phase shift relative to the
SG model directly from the corresponding lower component.
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4.2.3 Fermions in the Kink Background

The analysis of fermions in the kink background

Gφ1(x) = M tanh
(
Mx

2

)
Gφ2(x) = 0 , (4.46)

suffers from the same subtleties as the previously discussed SG model, i.e., the
mass terms at x = ±∞ have opposite signs and parity is not a good quantum
number. We will demonstrate two different techniques for analyzing this case.

First, we can proceed in analogy to the SG model and consider a widely
separated kink–anti-kink pair,

Gφ1(x, x0) = M

(
1 + tanh

M(x−R)
2

− tanh
M(x+R)

2

)
, (4.47)

where R is large. We will take advantage of the reflectionless property of
the bosonic kink potential to simplify the derivation, though our results are
general.

In the neighborhood of the kink, the Dirac spinor obeys the second-order
equation

(
− d2

dx2 + V2(x−R) 0
0 − d2

dx2 + Ṽ2(x−R)

)
ψk(x) = k2ψk(x) , (4.48)

where Vn(x) denotes a bosonic Pöschl–Teller potentials given by Eq. (4.5)
and Ṽn(x) ≡

(
n−1

n

)2
Vn−1

(
n−1

n x
)
. For the anti-kink, we obtain the same

equation with the upper and lower components reversed and R→ −R.
An incident wave far to the left is given by

ψk(x) = eikx

(
1
ieiθ

)
, (4.49)

with θ = arctan k
M . It scatters without reflection through the antisoliton,

becoming

ψk(x) = eikx

(
eiδ̃2

iei(δ2+θ)

)
, (4.50)

where

δn(k) = 2
n∑

j=1

arctan
(

jM
kn

)
and δ̃n(k) = δn−1

(
nk

n−1

)
= 2

n−1∑
j=1

arctan
(

jM
kn

)

are the total phase shifts for the bosonic potentials Vn(x) and Ṽn(x), respec-
tively. Note that δ̃n(k) does not have a pole at k = iM , which indicates the
absence of a zero mode. All the other bound states (if any) of Vn(x) and Ṽn(x)
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coincide. We further observe that the spinor Eq. (4.50) solves the free Dirac
equation for Gφ1 = −M because δ2(k) − δ̃2(k) = 2 arctan M

k
. The solution

then scatters without reflection through the soliton, giving

ψk(x) = eikx

(
ei(δ2+δ̃2)

iei(δ2+δ̃2+θ)

)
, (4.51)

so that the total phase shift for the kink/anti-kink pair, obtained by compar-
ison to the free solution Eq. (4.49), is δ2(k) + δ1(2k). Dividing this result by
2 to obtain the phase shift for a single kink, we see that the resulting phase
shift is the average of the phase shifts of the bosonic potentials for the upper
and lower components. Thus we obtain the fermionic phase shifts

δkink
tot (k) = arctan

(
M

k

)
+ 2arctan

(
M

2k

)
. (4.52)

The total fermionic phase shift for the kink is smaller than the corresponding
total bosonic phase shift (δ2) by arctan

(
M
k

)
. This result is general and re-

flects a difference in the zero modes in the two cases, which we have already
indicated above but will investigate more closely below.

As a second approach we may obtain the same result by explicitly con-
sidering a single kink and comparing it to the SG model above. To this end
we examine the generalized coupling between a fermion Ψ and a background
potential VF (x),

LF =
(
iΨ̄∂/ Ψ − VF (x)Ψ̄Ψ

)
, (4.53)

where the background VF (x) is a real antisymmetric function of x interpo-
lating between ±M at x = ±∞, respectively. We find the bosonic potentials

V (x) = VF (x)2 +
dVF (x)
dx

−M2

Ṽ (x) = VF (x)2 − dVF (x)
dx

−M2 , (4.54)

associated with the upper and lower components, respectively. We note that
these bosonic potentials are invariant under spatial reflection.

The Klein–Gordon equation for the upper components has solutions ηS
k (x)

and ηA
k (x). For x → ±∞, these solutions are given in terms of phase shifts

as
ηS

k (x)→ cos(kx± δS(k)) ηA
k (x)→ sin(kx± δA(k)) . (4.55)

Similarly, the Klein–Gordon equation for the lower components has solutions
η̃S

k (x) and η̃A
k (x). For x → ±∞, these solutions are given in terms of phase

shifts as

η̃S
k (x)→ i cos(kx± δ̃S(k)) η̃A

k (x)→ −i sin(kx± δ̃A(k)), (4.56)

where the arbitrary factors of ±i are inserted for later convenience. The first-
order Dirac equation relates the upper and lower components via
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η̃S
k (x) =

i

ω

[
d

dx
+ VF (x)

]
ηA

k (x) , ηA
k (x) =

i

ωk

[
d

dx
− VF (x)

]
η̃S

k (x) ,

η̃A
k (x) =

i

ω

[
d

dx
+ VF (x)

]
ηS

k (x) , ηS
k (x) =

i

ω

[
d

dx
− VF (x)

]
η̃A

k (x) . (4.57)

From the above relations we infer that the bosonic phase shifts in the sym-
metric and antisymmetric channels are related by

δ(S,A)(k) = δ̃(A,S)(k) + arctan
(
M

k

)
. (4.58)

The Dirac spinors are given by

ψ+
k (x) =

(
ηS

k

η̃A
k

)
and ψ−

k (x) =

(
ηA

k

η̃S
k

)
. (4.59)

The spinors in these two channels are orthogonal, since they have opposite
eigenvalues with regard to the symmetry operation of spatial reflection times
multiplication with σ3. This operation generalizes parity when V (x) is an
odd function in space. For fermions in such a configuration we find the phase
shift relative to SG model from the lower component. To get the total phase
shift relative to a free fermion we then add arctan

(
M
k

)
. Hence we find

δtot(k) = δ̃S(k) + δ̃A(k) + arctan
(
M

k

)
= δS(k) + δA(k)− arctan

(
M

k

)

=
1
2

∑
i=S,A

(
δi(k) + δ̃i(k)

)
= arctan

(
M

k

)
+ 2arctan

(
M

2k

)
, (4.60)

which agrees with Eq. (4.52).
The fermionic bound states are thus almost identical to those of the cor-

responding bosonic potentials, with an important caveat: Since there is a
discrepancy between the total fermionic and bosonic phase shifts, we have
δA(0) + δS(0) = δkink

tot (0) + π
2
, and Levinson’s theorem requires a correspond-

ing difference between the number of fermionic and bosonic bound states.
This difference is crucial to the analysis of the supersymmetric model, which
we will consider below.

The origin of this discrepancy lies in the zero modes,2 ω0 = 0. We have
already noted that δn and δ̃n have common poles at k = iMn/j with j =
1, . . . , n − 1; however, at k = iM only Vn has a bound state while Ṽn does
not. For a Dirac fermion in the background of a real scalar field, the bound
states with ω �= 0 occur in charge-conjugated pairs,

2 The zero modes should not be confused with the threshold states, for which
ω = M .
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ψ±ω(x) =
1√
2

(
ηω(x)
±η̃ω(x)

)
, (4.61)

where ηω(x) and η̃ω(x) are the bound state wavefunctions for the bosonic po-
tentials V (x) and Ṽ (x). Their bound state energies are guaranteed to coincide
because they are related by the first-order Dirac Eq. (4.57). For ω = 0 we
cannot decouple the Dirac equation into second-order differential equations
(since doing so involves dividing by ω), but have to consider the first-order
form. Assuming VF (x) ≥ 0 for x ≥ 0 (as for the kink) we find that the Dirac
fermion has only a single zero energy bound state,

ψ0(x) =
(
e−
∫ x
0 VF (y)dy

0

)
. (4.62)

The corresponding solution with only a lower component is not normalizable;
for an antisoliton, we would find the same situation with upper and lower com-
ponents reversed. Thus this solution should be considered as belonging half
to the positive-energy spectrum and half to the negative-energy spectrum. In
contrast, if we were to map the fermion system onto a boson model e.g., via
the second-order differential equation of the upper component, every mode,
including the zero mode, would be doubled in the negative-energy spectrum,
yielding two bosonic zero modes.

Conversely, if we consider only positive-energy fluctuations, correspond-
ing to a real scalar or a Majorana fermion (as will be appropriate in the
following section on supersymmetric models), we must count the zero mode
with a weight of one-half. The fermionic states at threshold also continue to
count as 1

2
, the same as in the boson case. We can see this result analytically

by observing that the residue of the pole at k = iM in the fermion transmis-
sion coefficient TF is half the residue of the pole at k = iM in the bosonic
transmission coefficient TB because of Eq. (4.60).

Putting everything together, the fermion contribution to the vacuum po-
larization energy for a Majorana fermion is

EF [φ0] = −1
2

∑
j

′
(ωj −M)−

∫ ∞

0

dk

2π
(ω −M)

d

dk

[
δtot(k) +

Vavg

k

]

= −1
2

∑
j

′
(ωj −M) +

∫ ∞

0

dk

4π
k

ω

⎡
⎣ ∑

i=S,A

(
δi(k) + δ̃i(k)

)
+

2Vavg

k

⎤
⎦ ,

(4.63)

where Vavg = (〈V 〉+ 〈Ṽ 〉)/2, as deduced from the second part of Eq. (4.60).
The primed summation prescription is defined to contain an additional factor
1
2 for the zero mode ω0 = 0. A Dirac fermion would include the contribution
from negative energies as well, which for a real scalar background would
simply double this result.
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For the kink solution, with VF (x) = M tanh
(

Mx
2

)
, the bosonic potentials

for the upper and lower components are V (x) = V2(x) = − 3
2
M2 sech 2 Mx

2
and

Ṽ (x) = Ṽ2(x) = − 1
2
M2 sech 2 Mx

2
, respectively. Then the fermionic vacuum

polarization energies becomes

EF [φ0] = M

(
1
π
− 1

4
√

3

)
(4.64)

for a Majorana fermion. Besides the zero mode, an ordinary bound state with

ω1 =
√

3
4M has contributed.

For the SG-model, VF (x) = M sech (x) and the bosonic potentials are
V (x) = V1(x) = −2M2 sech 2Mx and Ṽ (x) = Ṽ1(x) = 0, so that the correc-
tion to the energy from a Majorana fermion is M/(2π).

4.3 Bosons, Fermions, Supersymmetry, Central Charge,
and the BPS Bound

Here we will consider a special system in d = 1 + 1 dimensions in which the
fermion and boson fields appear supersymmetrically. In addition to comput-
ing the combined one-loop vacuum polarization energy, we also compute one-
loop vacuum expectation values of the central charge operator, by extending
the techniques developed in Chap. 3. These results enable us to investigate the
one-loop quantum Bogomol’nyi–Prasad–Sommerfield (BPS) [4, 5] inequality
relating these two quantities.

4.3.1 Fermions

In the supersymmetric framework the fermions couple to the soliton back-
ground via

LF = iΨ̄∂/ Ψ − U ′(φ)Ψ̄Ψ , (4.65)

where Ψ is a Majorana fermion and the prime denotes a derivative with
respect to the argument. Supersymmetry of the combined boson–fermion
system is established by relating the potentials for these fields in a prescribed
way:

LB =
1
2

(∂μφ)2 − 1
2
U2(φ) . (4.66)

For the kink and sine-Gordon models discussed in the previous section we
have U(φ) =

√
λ/2
(
φ2 − M2

2λ

)
and U(φ) = (2M2/

√
λ)sin

(√
λφ/2M

)
, re-

spectively. These couplings guarantee that the fermion and boson masses are
identical, as required by supersymmetry.
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In the classical regime, the solution to

d

dx
φ0(x) = ∓U(φ0(x)) (4.67)

represents the bosonic soliton (antisoliton) background. The boson fluctua-
tions about this background experience the potential

VB(x) = U ′2(φ0(x)) + U(φ0(x))U ′′(φ0(x))−M2 . (4.68)

In the fermion sector the small oscillation modes are two-component
spinors obeying the Dirac equation

γ0

(
−iγ1 d

dx
+ U ′(φ0(x))

)
ψk(x) = ωψk(x) . (4.69)

Note that the supersymmetry relation between the boson and fermion po-
tentials together with the stationary condition, Eq. (4.67), ensure that VB is
the potential in the second-order equation for the upper component of the
fermion fields, cf. Eq. (4.54).

To begin the renormalization process we have to collect the ultraviolet
divergences of the full theory. They arise from boson loops with one insertion
of the potential VB and fermion loops with one and two insertions of U ′−M .
Since the Majorana condition cuts the number of fluctuating fermion modes
in half, the divergence is

〈 12VB −M(U ′ −M)− 1
2 (U ′ −M)2〉

∫
ddk

(2π)2
1

k2 −M2

=
〈

1
2
UU ′′

〉∫
ddk

(2π)2
1

k2 −M2
(4.70)

using dimensional regularization. Since we are only computing quantum cor-
rections up to linear order in �, we may compensate for these divergences by
a shift in the supersymmetric potential,

U → U + CU ′′ , (4.71)

where C is a (divergent) constant of order �. Renormalization only enters
as redefinition of the superpotential, thereby maintaining supersymmetry. A
convenient renormalization condition to fix the finite part of C is to require
that leading tadpole graphs are canceled exactly, just as we did in the previous
section.

4.3.2 Supersymmetry and Central Charge

Having considered bosons and fermions separately, we now combine them
to explore the consequences for supersymmetry. The total energy is simply
obtained from adding the boson, Eq. (4.16), and fermion, Eq. (4.63), contri-
butions to
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E [φ0] = −M
4

+
∫ ∞

0

dk

2π
(ω(k)−M)

d

dk

[
arctan

M

k
− M

k

]
= −M

2π
. (4.72)

The first term represents the contribution from the mismatch in zero modes
discussed earlier. Furthermore, we have used the relation δA(k) + δS(k) =
δtot(k)+arctan m

k , cf. Eq. (4.60), and 〈V 〉− 〈Ṽ 〉 = U ′(φ0)
∣∣x→+∞
x→−∞ = 2M . The

result, Eq. (4.72), for the vacuum polarization energy of the supersymmetric
model agrees with Refs. [6, 7], as well as the result obtained from the Yang–
Baxter equation assuming the factorization of the S-matrix [8–10]. It has also
been obtained using the generalized derivative expansion in Ref. [11], using
the techniques of Ref. [12], and with heat kernel [13] and mode regularization
[14] approaches. A similar analysis in two dimensions was carried out in [15].
A number of subtleties of this result led many earlier workers [16–28] to
incorrect results. We note several consequences of our finding:

– First, the correction is non-zero, defying the näıve expectation that boson
and fermion quantum corrections cancel. In fact, the unregularized result
is divergent, as can be seen from a näıve analysis of the tadpole graphs.

– The non-zero result originates in the mismatch of zero modes; the system
can be thought of as having a Witten index of 1

2 because the positive-
energy spectrum contains one bosonic zero mode but only one-half of a
fermionic zero mode. These zero modes arise because ordinary (bosonic)
translation is completely broken by the kink background, but only one
of the two supersymmetry operators (which correspond to “fermionic”
translations) is broken. However, Levinson’s theorem implies that the
mismatch in zero modes must also extend to the continuum density of
states.

– The correction to the energy is universal, independent of the details of
the potential.

– As noted in Ref. [16], the negative result seems to imply a violation of
the BPS bound 〈H〉 ≥ |〈Z〉|, where H is the Hamiltonian and Z is the
central charge [29]. These expectation values are equal classically, and we
have found a negative correction to 〈H〉 at one-loop order. While there
is no “multiplet shortening” argument in this model requiring that the
bound remains an equality, the inequality must be obeyed. As we will
see, however, there is a corresponding correction to the central charge
ensuring that the BPS bound both continues to be obeyed and remains
an equality.

To analyze the BPS bound, we begin from the supersymmetry algebra.
We define supersymmetry charge operators via

Q± =
1
2
(
1∓ iγ1

) ∫
(∂/φ+ iU)γ0Ψ dx =

∫
(ΠΨ± + (φ′ ± U)Ψ∓) dx, (4.73)

where Ψ± = 1
2

(
1∓ iγ1

)
Ψ . The field operators satisfy canonical equal time

(anti)commutation relations,
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{iΨ±(x), Ψ±(y)} = iδ(x− y)
[φ(x),Π(y)] = iδ(x− y) , (4.74)

where Π = φ̇ is the momentum conjugate to φ; all other (anti)commutators
vanish. These commutation relations imply the supersymmetry algebra

{Q±, Q±} = 2H ± 2Z {Q+, Q−} = 2P , (4.75)

where the Hamiltonian H, momentum P , and central charge Z are given by

H =
∫ (

1
2
Π2 +

1
2
(φ′)2 +

1
2
U2 +

i

2
(Ψ−Ψ ′

+ + Ψ+Ψ
′
−) + iU ′Ψ−Ψ+

)
dx ,

P =
∫ (

Πφ′ +
i

2
(Ψ+Ψ

′
+ + Ψ−Ψ ′

−)
)
dx ,

Z =
∫
φ′U dx . (4.76)

It is easy to check that H is the same Hamiltonian as would be determined
canonically from the combined bosonic and fermionic Lagrangians. The her-
miticity of Q± gives the BPS bound on the expectation values of H and Z
in any quantum state:

〈H〉 ≥ |〈Z〉| , (4.77)

which directly follows from taking matrix elements of the supersymmetry
algebra, Eq. (4.75).

The classical energy is obtained from Eq. (4.67), with the fermion fields
set to zero,

Hcl =
1
2

∫ (
φ′0(x)

2 + U(φ0)2
)
dx =

∫
U(φ0(x))φ′0(x)dx = ∓Zcl, (4.78)

for the soliton and antisoliton, respectively, so that the BPS bound, Eq. (4.77),
is saturated at the classical level. We have found a negative correction to H
at one loop, so if there is no correction to Z, Eq. (4.77) will be violated.

To unambiguously compute the corrections to the central charge for a
soliton, it is easier to consider corrections to Q2

+ = H + Z, which is zero
classically. One reason to consider Q2

+ rather than H and Z separately is
that this quantity is finite and independent of the renormalization scheme.
Using Eq. (4.71) we see explicitly that the contribution from the counterterm
cancels,

ΔHct = C

∫
U ′′(φ0)U(φ0) dx = −C

∫
U ′′(φ0)φ′

0 dx = −ΔZct . (4.79)

We recall that the counterterm coefficient C is already a one-loop quantity
and thus only the classical fields must be substituted in Eq. (4.79).

Next we expand φ(x) = φ0(x) + η(x), where the soliton solution φ0 is an
ordinary real function of x. Neglecting terms of order η3 and higher (which
give higher-loop corrections), we obtain
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〈H + Z〉φ =
1
2

∫ 〈
Π2 +

[(
d

dx
+ U ′(φ0)

)
η

]2
+ iΨ+

(
d

dx
− U ′(φ0)

)
Ψ−

+ iΨ−

(
d

dx
+ U ′(φ0)

)
Ψ+

〉
φ

dx, (4.80)

where 〈. . .〉φ denotes the expectation value in the classical soliton background.
To evaluate this expression, we decompose the fields η and Ψ using cre-

ation and annihilation operators for the small oscillations around φ0. The
small oscillation modes will be given in terms of the eigenmodes of the bosonic
potentials V (x) and Ṽ (x). In Chap. 3 we have already described the Fock
decomposition for bosonic fluctuations, cf. Eq. (3.14), which implies the nor-
malization as in Eq. (3.15) for ηk(x) and η̃k(x), which are in turn related via
Eq. (4.57). For the Majorana fields we take analogously3

Ψ(x) =
∫

dk√
π

[(
ηk(x)
η̃k(x)

)
bke−iωkt

+
(
ηk(x)
η̃k(x)

)
b†keiωkt

]
+ ψ0(x)bω=0 , (4.81)

where we made explicit the contribution from the zero mode, Eq. (4.62). The
fermion creation and annihilation operators obey anti-commutation relations,
{bk, b†k′} = δ(k − k′), etc. Elementary algebra yields

i

(
d

dx
+ U ′(φ0)

)
η =

∫
dk√
π

√
ωk

(
akη̃k(x)e−iωkt − a†kη̃k(x)∗eiωkt

)
,

iΠ(x) =
∫

dk√
π

√
ωk

(
akηk(x)e−iωkt − a†kηk(x)∗eiωkt

)
,

Ψ+ = ηω=0(x)bω=0

+
∫

dk√
π

(
bkηk(x)e−iωkt + b†kηk(x)∗eiωkt

)
,

Ψ− =
∫

dk√
π

(
bk η̃k(x)e−iωkt + b†k η̃k(x)∗eiωkt

)
,

i

(
d

dx
+ U ′(φ0)

)
Ψ+ =

∫
dk√
π
ωk

(
bkη̃k(x)e−iωkt − b†kη̃k(x)∗eiωkt

)
,

i

(
d

dx
− U ′(φ0)

)
Ψ− =

∫
dk√
π
ωk

(
bkηk(x)e−iωkt − b†kηk(x)∗eiωkt

)
. (4.82)

Assembling these results we find for the vacuum expectation value

〈H + Z〉φ =
∫
dx

∫
dk

2π
ωk |ηk(x)|2 +

∫
dx

∫
dk

2π
ωk |η̃k(x)|2

−
∫
dx

∫
dk

2π
ωk |η̃k(x)|2 −

∫
dx

∫
dk

2π
ωk |ηk(x)|2 = 0 , (4.83)

3 Since the equation of motion for the spinors is only linear in the time derivative
a factor

√
ω arises in the mode decomposition relative to the bosons. This factor

is usually included in the spinor part of the fermion field.
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and the BPS bound remains saturated. If we instead considered an antisoli-
ton, we would find the same result for 〈Q2

−〉φ̄ = 〈H − Z〉φ̄, with the roles
of Ψ+ and Ψ− reversed. We note that this result did not depend on any
specific properties of U , so it holds for any supersymmetric soliton satisfying
Eq. (4.67). Some caution is required in the manipulations yielding Eq. (4.83),
because we have exchanged the order of integration in coordinate and mo-
mentum spaces. We have already discussed that this manipulation is only
allowed when the momentum k has at least an infinitesimal positive imagi-
nary part, cf. Eq. (2.46). This prescription has been imposed implicitly in all
of the integrals that appear in Eq. (4.83).

In the context of Eq. (2.46) we have observed that spatial integrals over
quantities that are bilinear in the fluctuating wavefunctions are related to the
(derivative of) the phase shifts. We will use that relation here to perform a
final consistency check on our calculation for the BPS bound by calculating
the correction to Z directly. We start from the classical expression for Z in
Eq. (4.76) and expand about the classical solution φ = φ0, giving

ΔZ = 〈Z〉φ − Zcl

= ΔZct +
m2

λ

∫ 〈
U ′ηη′ − 1

2
UU ′′η2

〉
φ

dx (4.84)

= ΔZct +
m2

2λ

∫ 〈((
d

dx
+ U ′

)
η

)2

− (η′)2 − η2(U ′)2 − UU ′′η2

〉

φ

dx .

After substituting the expansions of Eq. (4.82) we obtain

ΔZ = ΔZct +
∫
dx

∫
dk

2π
ωk |η̃k(x)|2 −

∫
dx

∫
dk

2π
ωk |ηk(x)|2

=
M

4
−
∫
dk

2π
(ω −M)

d

dk

(
tan−1 M

k
− M

k

)
=
M

2π
= −ΔH , (4.85)

where we have used the relation (4.58) between the phase shifts of η and η̃ and
also that it suffices to employ the classical fields in the counterterms, which
allows us to identify ΔZct with ΔHct as in Eq. (4.79). This term cancels the
ultraviolet divergence in the integral in Eq. (4.85), leaving an unambiguous
finite result.

4.3.3 SVV Anomaly

The universal result that we have found for the equal one-loop corrections
to the energy and central charge suggests a broader principle at work. Niemi
and Semenoff [30] derived a generalization of Levinson’s theorem appropri-
ate for the paired supersymmetric potentials such as V (x) and Ṽ (x) and
showed its connection to anomalies. The existence of an anomaly was also
suggested in Ref. [16]. Shifman, Vainshtein, and Voloshin (SVV)[31] (see also
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Ref. [32]) made this connection explicit by demonstrating the existence of an
anomaly in the central charge. Quantum corrections induce a modification in
the topological current

ξμ = εμν∂ν (W (φ))→ εμν∂ν

(
W (φ) +

1
4π
W ′′(φ)

)
, (4.86)

where W (φ) is the superpotential with W ′(φ) = U(φ). The central charge is
then obtained by integrating ξ0 over space, yielding

Z =
(
W (φ) +

1
4π
W ′′(φ)

)
x=∞

−
(
W (φ) +

1
4π
W ′′(φ)

)
x=−∞

. (4.87)

The difference in W (φ) yields the classical central charge, while the difference
inW ′′(φ)/(4π) is an anomalous correction. This analysis shows that the result
we have derived as a one-loop matrix element actually represents an exact
operator correction, as is common for quantum field theory anomalies. The
generalized Levinson’s theorem corresponding to this anomaly [30] reduces
to the usual Levinson’s theorem in this case, which, as we have seen above,
is the origin of the non-vanishing quantum correction.

4.4 Soliton Stabilization by Fermions in d = 1+1

In the remainder of this chapter we use the techniques introduced in Sect. 4.2.1
to demonstrate that vacuum polarization effects can enable bosonic back-
grounds to carry non-zero-fermion number NF , and that such backgrounds
can have total energy less than NF free fermions, making them energetically
stable if fermion number is conserved.

Scalar field theories can contain spatially varying (but time-independent)
configurations that are local minima of the classical energy. Such solitons
are often found as solutions to the nonlinear classical equations of motion.
When quantum effects are taken into account, the classical description must
be re-examined. Now the spatially varying soliton configuration should min-
imize the “effective energy,” which takes into account classical and quantum
effects.4 We are now in a position to compute this quantity efficiently.

To give an example of a quantum soliton that is not present in the classical
theory alone, we examine a renormalizable model in 1+1 dimensions in which
a scalar field is Yukawa coupled to a fermion as in Eq. (4.23). The classical
energy is minimized when the scalar field has a constant value v and there are
no classical solitons. The fermion gets a mass M = Gv through its Yukawa
coupling. First, we calculate exactly the fermion’s properly renormalized one-
loop contribution to the scalar field effective energy. (By “exactly” we mean

4 By effective energy we mean the effective action per unit time; the term “effective
potential” is reserved for spatially constant configurations.
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to all orders in the derivative expansion, which is crucial since we consider
configurations varying on the scale 1/M .) Then we show that for certain
choices of model parameters—in particular with G large—we can exhibit a
field configuration that carries fermion number and has energy below M .
Since fermion number is conserved, the only decay channel is through the
emission of a free fermion, which is energetically forbidden.

We search for the lowest energy configuration carrying fermion number
using a few parameter variational ansatz. The soliton, which is the actual
lowest energy configuration with fermion number one, is presumably not far
from our variational minimum and has strictly lower energy. Thus, if we find
a stable minimum within our ansatz space, the soliton has energy less than
M and is absolutely stable.

The idea that a heavy fermion can create a soliton is not new and has
been explored previously [33–45]. What we add here is the ability to exactly
calculate the renormalized fermionic one-loop effective energy for any spa-
tially varying meson background, which is essential to demonstrate stability
at the quantum level. The model we consider has a two-component meson
field φ = (φ1, φ2) coupled equally to NF fermions. We suppress the fermion
flavor label but will keep track of the factor NF as necessary. The Lagrangian
is L = LB + LF with

LB =
1
2
∂μφ · ∂μφ− V (φ) , (4.88)

where

V (φ) =
λ

8

[
φ · φ− v2 +

2αv2

λ

]2
− λ

2

(
αv2

λ

)2

− αv3 (φ1 − v) (4.89)

and LF is given in Eq. (4.23). Note that with α set to zero, the theory has a
global U(1) invariance

φ1 + iφ2 → eiϕ (φ1 + iφ2) and Ψ → e−iϕγ5/2Ψ . (4.90)

Näıvely, one would imagine that spontaneous symmetry breaking occurs with
α = 0 so that we could pick a classical vacuum, say φcl = (v, 0), and expand
the theory about this point. In 1+1 dimensions, however, the massless mode
that corresponds to motion along the chiral circle, φ · φ = v2, gives rise to
infrared singularities and there is no spontaneous symmetry breaking [46].
By introducing α �= 0, we have tilted the potential to eliminate the massless
mode. For α large enough it is then legitimate to expand about φcl. There
are two massive bosons, which we call σ and π, with masses m2

σ = (λ+ α) v2

and m2
π = αv2.

The fermions get mass through their Yukawa coupling to φ. In the per-
turbative vacuum (i.e., when expanding about φcl), the fermion has mass
M = Gv. One could imagine that various distortions of φ would affect the
fermion spectrum. For example, one could keep φ2 = 0 and let φ1 → φ1(x)



84 4 Applications in One Space Dimension

with limx→±∞ φ1(x) = v, but φ1(x) < v over some region in x of order w.
Alternatively, one could keep φ · φ = v2, but let φ = v(cos θ(x), sin θ(x)),
where θ(x)→ 0 as x→ −∞ and θ(x)→ 2π as x→ +∞. Again the deviation
of φ from φcl occurs in a region of order w. In both cases, if w is of order
1/M , then there are bound state solutions of the single-particle Dirac equa-
tion, Eq. (4.24), with binding energies of order M , so that a fermion bound to
the φ field has an energy below M . (Because of its topological properties, the
latter configuration is especially efficient at binding a fermion [47].) However,
there is an energy cost for deviating from the vacuum φcl, which is given
by the gradient and potential terms in Eq. (4.88). Still, considering just the
single bound fermion and the classical scalar energy, we might expect a total
energy below M for G large enough.

Of course, Ψ describes a quantum field and any distortion of the back-
ground φ(x) away from φcl will cause shifts in the zero-point energies of
the fermion fluctuations. To form a self-consistent approximation, we must
compute the effect of these shifts as well, since they are of the same order
in � as the bound state contribution. Because we are comparing to fermions
in the trivial vacuum, it is essential that we carry out this calculation using
conventional renormalization conditions defined in the perturbative sector of
the theory, as is made possible by our method.

We have written Eq. (4.23) as a commutator to ensure that the (complete)
Lagrangian is invariant under the charge conjugation operation Ψ → CΨ∗ and
(φ1, φ2) → (φ1,−φ2). This symmetry implies that positive-energy modes of
the fluctuating fermion are related to negative-energy modes of a different
background. For an externally prescribed background, the fermion vacuum
energy thus gets contributions from both the positive and negative-energy
eigenvalues of the single-particle Dirac Hamiltonian, Eq. (4.24). Using the
techniques of Sect. 4.2.1 we compute

δF (k) = δ+(ω(k)) + δ+(−ω(k)) + δ−(ω(k)) + δ−(−ω(k)) . (4.91)

Here ω(k) =
√
k2 +M2 and δ± is the scattering phase shift for the positive

(negative) parity channel, cf. Eqs. (4.34) and (4.35). Similarly, the spectrum
of the discrete bound state energy levels {ωl} need not be invariant under
sign change either. Hence we have to consider the positive and negative-
energy bound states individually as well. To this end we write the fermion
loop contribution to the vacuum polarization energy as

ΔEF = −1
2

∑
l

(|ωl| −M)−
∫ ∞

0

dk

2π
(ω(k)−M)

d

dk
δF (k) + Ect . (4.92)

Of course, the momentum integral in Eq. (4.92) is formally infinite. For
large k, the phase shifts go to zero like 1/k, so the integral is logarithmically
divergent. We identify the leading large k behavior of δF (k) with the con-
tribution of the first Born approximation plus the piece of the second Born
approximation related to it by chiral symmetry, which we call δ̂(k). As a
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consequence of the global symmetry of Eq. (4.90), we can identify this lead-
ing piece unambiguously with the coefficient of the Lagrangian counterterm,
v2−φ ·φ. The renormalization conditions that fix the counterterm in pertur-
bation theory, i.e., the absence of any tadpole graph, here translate into the
statement that in evaluating Eq. (4.92) we should subtract δ̂(k) from δF (k):

ΔEF = −1
2

∑
l

(|ωl| −M)−
∫ ∞

0

dk

2π
(ω(k)−M)

d

dk

(
δF (k)− δ̂(k)

)
,

(4.93)
where

δ̂(k) =
2
k

∫ ∞

0

dx
(
v2 − φ(x)2

)
. (4.94)

4.4.1 The One-Loop Effective Energy

We are interested in calculating the total one-loop effective energy of a static
configuration φ(x). We take φ(x) to be specified by a few parameters {ζi} and
measure energy in units of the fermion mass M = Gv using the dimensionless
distance ξ = Mx. In 1 + 1 dimensions φ(x) and v are dimensionless. For the
numerical analysis, it is convenient to rescale φ(x) by v so that φ(x)→ (1, 0)
as |ξ| → ∞, and to define dimensionless couplings

α̃ =
α

G2
and λ̃ =

λ

G2
. (4.95)

With this rescaling and Eqs. (4.88) and (4.89), we have

Ecl[φ ]
M

= v2

∫ ∞

−∞
dξ

(
1
2
φ ′ · φ ′ +

λ̃

8

[
φ · φ− 1 +

2α̃
λ̃

]2

− λ̃
2

(
α̃

λ̃

)2

− α̃(φ1 − 1)

)

= v2Ecl(α̃, λ̃, {ζi}) , (4.96)

where a prime denotes differentiation with respect to ξ.
We see that a single fermion makes a contribution that is proportional to

M and also depends on the variational parameters {ζi}. Hence we can express
Eq. (4.93) as MEF ({ζi}). For NF flavors the one-fermion loop contribution
is therefore NFMEF ({ζi}).

The boson one-loop contribution comes from summing the square roots
of the eigenvalues of the operator − ∂2

∂x2 + ∂2V
∂φi∂φj

. Rescaling as before we find
that the boson one-loop energy can be written as MEB({ζi}).

Putting together the classical energy and the one-loop energies we get

Etot[φ ]
NF M

=
v2

NF
Ecl(α̃, λ̃, {ζi}) + EF ({ζi}) +

1
NF
EB(α̃, λ̃, {ζi})
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+ higher loops . (4.97)

For NF large we can neglect the boson one-loop contribution relative to
the fermion one-loop contribution. Furthermore it can be shown that 1/v2

counts boson loops. Taking both NF and v2 large with the ratio fixed, we
can thus neglect the higher loops as well. In this parameter regime we need
only consider the contributions from Ecl and EF , and the one-fermion loop
approximation becomes reliable.

4.4.2 The Fermion Number

A non-trivial background φ(x) distorts the energy levels of the Dirac Hamil-
tonian, Eq. (4.24), possibly introducing single-particle bound states (with
positive and negative energies). We identify the lowest energy state of the
system, the one with all the negative-energy levels filled, as the vacuum. If a
level crosses zero as we interpolate between φcl(x) and φ(x), this state will
have non-zero-fermion number. In particular, if φ(x) circles φ = (0, 0) as φ
goes from (1, 0) at x = −∞ to (1, 0) at x = ∞, then the vacuum state will
carry non-zero-fermion number, provided that the scale over which φ varies,
w, is much larger than the fermion Compton wavelength, 1/M [44, 45, 48]. In
Chap. 5 show that the fermion number of the vacuum, Qvac, is given in terms
of the positive-energy phase shifts at k = 0 and the number of positive-energy
bound states by

Qvac = NF

(
1
π

[δ+(M) + δ−(M)]− 1
2
− nω>0

)
, (4.98)

where nω>0 is the number of bound states with positive energy. We study
configurations that loop once around φ = 0, so Qvac is either 0 or NF . We
are interested in states with fermion number NF . If Qvac = NF , then the
state we want is simply the vacuum. If Qvac = 0, however, we have to build
the lowest energy state with fermion number NF by filling the lowest positive
energy level of Eq. (4.24) explicitly with NF fermions. Therefore, if Qvac = 0,
EF appearing in Eq. (4.97) must be augmented by ω1, where Mω1 is the
smallest positive eigenvalue of Eq. (4.24).

4.4.3 Results

We want to look for background configurations φ that can produce states with
fermion number NF and whose total energy is below NFM . From Eq. (4.97)
with EB neglected, we define

B =
v2

NF
Ecl + EF − 1 , (4.99)

which is the binding energy of a configuration with fermion number NF in
units of NFM . For our numerical computations, we take the ansatz
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φ1 + iφ2 = 1−R+ReiΘ where Θ = π(1 + tanh(ξ/w)) . (4.100)

The two variational parameters are R and w. As ξ goes from −∞ to ∞, φ
moves in a circle of radius R in the (φ1, φ2) plane, starting and ending at
(1, 0). The scale over which φ varies is w.

For fixed α̃ and λ̃ we vary R and w until we produce the configuration
with the smallest B. The results are shown in Fig. 4.1. We see that it is
possible to find a configuration whose total energy is below NFM . Since we
are minimizing B subject to the constraint that φ is of the form Eq. (4.100),
we know that the true minimum of B in the fermion number NF sector also
has an energy below NFM . This is the stable soliton.
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In Fig. 4.2 we show the width, wsol, and the radius, Rsol, for the minimum
energy configuration as a function of α̃ for various values of λ̃. Note that
the size of the soliton grows like 1/

√
α̃ as α̃ goes to zero. In that region,

Rsol approaches 1, so the φ configuration approaches the chiral circle. In
fact, the energy of the fermion number NF soliton goes to zero as α̃ goes
to zero. However, for α̃ very small the bosonic quantum fluctuations restore
the classically broken symmetry. Thus we cannot trust our results for α̃ very
small and we do not believe that this large and light soliton is a reliable
consequence of this model. For moderate values of α̃, where the width of the
soliton is not controlled by 1/

√
α̃, we do trust our results. For the value of

v/
√
NF shown in Fig. 4.2, the model becomes trustworthy for α̃ ≈ 0.3. For

further discussion of this point, see Ref. [47].
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5 Spectral Analysis of Charges

Many field theory solitons have particularly interesting properties when they
are coupled to fermions, because they act as strong background fields that
can drastically alter the Dirac spectrum. Solitons that break invariance under
charge conjugation (C) and its combination with parity (CP) can introduce
asymmetries in the Dirac spectrum, which cause the soliton to carry fermion
number, as we have seen in Chap. 4. In case of a non-topological soliton we
may interpolate continuously between the trivial background and the soliton
background and observe this fermion number as a level crossing in the Dirac
spectrum. In this chapter we will derive results like Eq. (4.98) that enable us
to precisely trace back these level crossings.

In addition, solitons with non-trivial topological boundary conditions can
also carry fractional fermion number [1–3]. In the previous chapter we learned
how Levinson’s theorem pointed to the existence of an anomaly in the min-
imal supersymmetric model in one dimension. The anomaly was associated
with a fractional charge, the Witten index of 1/2. We will show how conven-
tional anomalies, and the associated fractional charges, can be derived with
similar techniques. Our approach follows that of Ref. [4], which builds on
previous work by Blanckenbecler and Boyanovsky [5, 6].

5.1 Basic Idea and Derivation

We consider a single Dirac fermion with mass m in n space dimensions and
apply the scattering theory techniques we have developed to calculate the
charge carried by a soliton background. We will assume that the background
has rotational symmetry, so that the spectrum decomposes into a sum over
eigenchannels α. In one dimension there are just two such channels, for even
and odd parity, while in three dimensions the sum will run over parity and the
rotational quantum numbers including the degeneracy within each channel.
We begin by writing the fermion charge density as

j0(x) =
1
2
〈Ω|[Ψ †(x), Ψ(x)]|Ω〉, (5.1)

where x is an d = n+ 1-dimensional vector. Notice that the anticommuting
fermion fields are ordered to preserve charge conjugation invariance: [Ψ̄ , Ψ ] is
even under C while [Ψ̄ , γ5Ψ ] and [Ψ̄ , γμΨ ] are odd under C.
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The next step is a conventional Fock decomposition in terms of the
eigenstates ψα(x, ω) of the single-particle (stationary) Dirac equation as in
Eq. (3.14). We find the expectation value of the charge density in the back-
ground of the soliton

〈j0(r)〉 = − 1
π

∑
α

(∫ ∞

−∞
sgn(ω)|ψα(r, ω)|2dω

)
− 1

2

∑
α,j

sgn(ω)|ψα,j(ω)|2, (5.2)

where ψα(r, ω) refers to the radial parts of the solutions to the Dirac equation
that are normalized as in Eq. (3.15). As usual, the mode sum splits into
a continuum piece from the scattering states and a sum over bound state
contributions. The label α may refer to more general quantum numbers than
just orbital angular momentum. For instance, in the bag model discussed in
Sect. 5.4, it denotes grand spin, the vector sum of orbital angular momentum,
spin, and isospin.

Our ultimate goal is to compute the charge as the radial integral of j0,
which involves the integral over the square of the radial wavefunction. For
the bound state contribution this integral just gives ±1

2 for each bound state.
For the continuum contribution, we first have to subtract the undistorted
wavefunctions squared, because we are only interested in the change of the
charge due to the background. In Eq. (2.46) we have exactly related the
spatial integral of that difference to the derivative of the phase shift.

Putting these results together we relate the charge to the phase shift via

Q = −
∑
α

⎛
⎝∫ ∞

m

dω

2π
dδα(ω)
dω

+
∑

ωj
α>0

1
2
−
∫ −∞

−m

dω

2π
dδα(ω)
dω

−
∑

ωj
α<0

1
2

⎞
⎠

=
1
2π

∑
α

[
δα(m)− δα(∞)− πn>

α + πn<
α − δα(−m) + δα(−∞)

]
, (5.3)

where n>
α and n<

α give the number of bound states with positive and negative
energy, respectively, in each channel. We will see that this result generalizes
unchanged to cases with fractional charges, when the non-integer values ap-
pear through the phase shift at ω = ±∞.

We will now rederive Eq. (5.3) from Levinson’s theorem, which we studied
in Sect. 2.4. This approach will provide additional physical motivation for
Eq. (5.3) and will also enable us to further simplify it. Levinson’s theorem
gives the number of states N that have left the continuum in channel α by
passing through the threshold at m as

δα(m)− δα(∞) = Nπ. (5.4)

These states typically appear as bound states (which give delta functions in
the density of states), though it is possible that in cases where the spectrum
is not charge conjugation invariant, they can reenter the continuum of states
with opposite energy. We have derived Levinson’s theorem as a sum rule for
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the phase shift. (In some channels, cf. Sect. 2.4.3, an anomaly emerges so that
the right-hand side of Eq. (5.4) is modified to

(
N − 1

2

)
π.)

Computing the fermion number of a field configuration now becomes a
matter of simple counting. We consider each channel separately. If a bound
state leaves the positive continuum but appears as a positive-energy bound
state, it has not changed the fermion number of the configuration. However,
if it crosses ω = 0 and becomes a negative-energy bound state, it is now filled
in the vacuum and gives a fermion number of one. Thus we may read off the
fermion number from the positive-energy spectrum

Q> =
1
π

∑
α

[
δα(m)− δα(∞)− πn>

α

]
. (5.5)

Note that this result also recognizes the asymmetry that arises from a state
that turned from a negative to a positive-energy bound state. Similarly the
negative-energy spectrum yields

Q< =
1
π

∑
α

[
δα(−∞)− δα(−m) + πn<

α

]
. (5.6)

Both calculations yield the same charge, as can be seen from Eq. (5.3) to-
gether with the fact that Levinson’s theorem tracks all states that enter and
leave the two continua, even in the presence of CP violation,

δα(m)− δα(∞)− πn>
α + δα(−m)− δα(−∞)− πn<

α = 0 , (5.7)

so that

Q =
1
π

∑
α

(
δα(m)− δα(∞)− πn>

α

)

=
1
π

∑
α

(
πn<

α − δα(−m) + δα(−∞)
)
. (5.8)

In the anomalous channels, we must subtract 1 from the left-hand side
of Eq. (5.7) and 1

2
from the subsequent expressions for Q because of the

modification to Levinson’s theorem.
We will next discuss a number of applications of Eq. (5.8).

5.2 Electrostatics and the Need for Regularization

The conserved charges we consider are not renormalized, i.e.,they do not
receive any contributions from the counterterms of the theory.1 Nonetheless,
it is essential to include the effects of the regularization procedure used to
1 This non-renormalization holds for all Noether currents of an unbroken, global,

and linearly realized symmetry [7].
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define the theory. The example of QED in 1+1 dimensions provides a clear
illustration of this subtlety. Although the theory is finite, the regularization
process is non-trivial.

The Lagrangian is

L = − 1
4e2

FμνF
μν +

1
2
[
Ψ̄ , (γμ(i∂μ −Aμ)−m)Ψ

]
, (5.9)

where we again have used the commutator to ensure that the free theory is C
and CP invariant. In ordinary perturbation theory, the vacuum polarization
diagram computed in d spacetime dimensions is

Πμν(p) = 2ie2Nd

∫ 1

0

dξ

∫
ddk

(2π)d
(5.10)

×
2ξ(1− ξ)(gμνp

2 − pμpν) + gμν

(
m2 − p2ξ(1− ξ) + k2( 2

d − 1)
)

(k2 + p2ξ(1− ξ)−m2)2
,

where 2Nd is the dimension of the Dirac algebra, cf.Sect. 3.5. If we had not
regulated the theory by analytically continuing the spacetime dimension, we
would not have found the last term, because it vanishes if we set d = 2 from
the outset. Performing the integral with d �= 2 shows that this term exactly
cancels the two preceding terms, leaving the transverse form of the vacuum
polarization that is required by gauge invariance. Thus we must include in
our definition of the field theory the additional information that the theory
is regulated in a way that preserves gauge invariance at the quantum level.

The vacuum polarization diagram reflects the effect of the chiral anomaly.
The anomaly is obtained from the leading correction to the vector current,2

which is related to the polarization tensor by

jμ(x) =
∫
ddyΠμν(x− y)Aν(y), (5.11)

where Πμν(x) denotes the Fourier transform of Eq. (5.10). Thus a completely
transverse polarization tensor corresponds to a conserved vector current. Set-
ting d = 2 from the outset gives an anomalous vector current and conserved
axial current

∂μj
μ = ∂μΨ̄γ

μΨ =
eNd

π
∂μA

μ

∂μj
μ
5 = ∂μΨ̄γ

μγ5Ψ = 0 , (5.12)

where we have used jμ
5 = −εμνjν for the axial vector current in d = 2.

Including the contribution proportional to 2
d
− 1 in Eq. (5.10) transfers this

anomaly to the axial vector current [8]

2 More precisely, this statement refers to the vacuum expectation value of the
current, 〈Ω|jμ(x)|Ω〉. For simplicity, we will omit the brackets 〈·〉 in the following.
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∂μj
μ = ∂μΨ̄γ

μΨ = 0

∂μj
μ
5 = ∂μΨ̄γ

μγ5Ψ =
eNd

2π
εμνFμν . (5.13)

If we choose a configuration with A1 = 0 and adiabatically turn on a
configuration A0(x) between t = −∞ and t = 0, then integrating Eq. (5.12)
yields

Q =
∫
j0(x)dx =

eNd

2π

∫
A0(x)dx, (5.14)

when choosing not to regulate the finite polarization tensor, Eq. (5.10). By
contrast, dimensional regularization gives Q = 0.

The phase shift approach shows exactly the same behavior. We consider
the example of an electrostatic square well potential with depth ϕ and width
2L. First we ignore subtleties of regularization and compute directly in d = 2.
The phase shift in the negative parity channel δ−(ω) is determined by

m+ ω

k
tan(kL+ δ−(ω)) =

m+ ω + eϕ

q
tan qL, (5.15)

with k =
√
ω2 −m2 and q =

√
(ω + eϕ)2 −m2. Similarly, the phase shift in

the positive parity channel δ+(ω) is determined by

k

m+ ω
tan(kL+ δ+(ω)) =

q

m+ ω + eϕ
tan qL . (5.16)

As ω → ±∞, the total phase shift approaches ±2eϕL, giving a fractional
contribution to the total fermion charge, in agreement with Eq. (5.14). Al-
though such fractional charges are possible (and we will see examples of them
in the next section), here this result indicates that the method of calculation
has not preserved gauge invariance.

To preserve gauge invariance, we regularize the computation by calculat-
ing the phase shifts as analytic functions of the space dimension n. Since
we are only concerned with the contribution from ω → ±∞, we can consider
just the leading Born approximation. In arbitrary dimensions, the total phase
shift is a sum over channels labeled by total spin j = 1

2
, 3

2
, . . . and by parity.

Summing over parity, the leading Born approximation to the total phase shift
in each channel j is given by

δ
(1)
n,j = ωeπ

∫ ∞

0

A0(r)
(
Jn

2 +j− 3
2
(kr)2 + Jn

2 +j− 1
2
(kr)2

)
rdr, (5.17)

which has degeneracy D(j) given by Eq. (3.74). Summing over j using
Eqs. (3.72) and (3.54) yields the leading Born approximation to the total
phase shift in n space dimensions

δ(1)n (ω) = ωeπNd

∞∑
�=0

D(�)
∫ ∞

0

A0(r)Jn
2 +�−1(kr)2rdr
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= ωkn−2 Ndeπ

2n−2Γ (n
2 )2

∫ ∞

0

A0(r)rn−1dr

= ωkn−2 NdL
neϕπ

2n−2nΓ (n
2 )2

(5.18)

which reduces to ±2NdeϕL if we send n → 1 and then take the limit ω →
±∞. But the order of these limits is essential: If we first regulate the theory
by holding the dimension fixed at n < 1, we then see that the contribution as
ω → ±∞ vanishes. Only after we have taken the ω → ±∞ limits do we send
n → 1. This procedure, dictated by dimensional regularization, preserves
gauge invariance and gives no fractional charge.

We note that other regularization methods commonly used in phase shift
calculations, such as zeta-function regularization, would not preserve gauge
invariance and would thus lead to the same spurious fractional result.

5.3 Chiral Bag Model in One Space Dimension

Chiral bag models provide simple illustrations where fractional fermion num-
bers do arise. We begin with a Dirac fermion in one dimension on the half-line
x ≥ 0, subject to the boundary condition

ieiγ5θΨ = γ1Ψ (5.19)

at x = 0, with −π
2
≤ θ ≤ π

2
. For x > 0 we solve the free Dirac equation

γ0(−iγ1∂x +m)Ψ = ωΨ , (5.20)

where the energy ω may be positive or negative. In the basis γ0 = σ3,
γ1 = iσ2, and γ5 = σ1 the solutions are

φ±(x) =
(
±k

ω −m

)
e±ikx. (5.21)

The scattering solutions define the phase shifts by

ψ±(x) = φ−(x)± e2iδ±(ω)φ+(x). (5.22)

To extract the phase shifts from this expression, we apply the boundary
condition, Eq. (5.19), to ψ± at x = 0, giving

cot δ+(ω) = − k

ω −m tanβ and tan δ−(ω) =
k

ω −m tanβ, (5.23)

where β = π
4 −

θ
2 is taken to be positive. For β > 0 the phase shifts are

smooth functions of the energy such that
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∑
α=±

δα(m)−δα(∞) = −2β+π and
∑
α=±

δα(−m)−δα(−∞) = 2β . (5.24)

To find the bound states, we look for solutions of the form

φ(x) =
(

iκ
ω −m

)
e−κx, (5.25)

with κ =
√
m2 − ω2. Imposing the boundary condition gives

m− ω = κ tanβ , (5.26)

which is solved by ω = m sin θ. So there is exactly one bound state, which
has positive (negative) energy for θ > 0 (θ < 0). Thus we have

∑
α n

>
α =

1
2

[1 + sign(θ)] and
∑

α n
<
α = 1

2
[1− sign(θ)], which together with Eq. (5.24)

can be substituted into Eqs. (5.5)–(5.8) to yield

Q = Q> = Q< =
θ

π
− 1

2
sign(θ) . (5.27)

For θ = 0, γ5 does not appear, and therefore the charge vanishes because
there is no CP violation. Furthermore Q(θ = ±π

2
) = 0, so this result can

be periodically continued beyond the defining interval. As expected, a jump
occurs at θ = 0 when the bound states move from the positive to the negative
spectrum and vice versa.

5.4 Chiral Bag Model in Three Space Dimensions

This simple model generalizes naturally to three dimensions. We consider an
isodoublet of Dirac fermions subject to the boundary condition

ieiθτ ·x̂γ5Ψ = (γ · x̂)Ψ (5.28)

imposed on a sphere of radius R, where τ are the isospin Pauli matrices. This
condition is not invariant under space and isospin rotations individually, but
it is invariant under combined space and isospin rotations, and under parity.
Thus we can decompose the scattering problem into eigenchannels labeled by
parity and total grand spin G = 0, 1, 2, . . . [9, 10], where grand spin G is the
sum of orbital and spin angular momentum j = l+ 1

2
σ and isospin 1

2
τ . These

eigenstates are also important for the discussion in Chap. 6 and therefore
we will explain their construction in detail here. The spherical harmonics,
Y�m(x̂) = 〈x̂|lm〉, are the eigenfunctions of the orbital angular momentum l.
They couple with spin states |s〉S to form eigenstates of total spin j

|j j3 �〉 =
∑

s=± 1
2

Cjj3
�(m−s), 1

2 s
|l (m− s)〉|s〉S , (5.29)
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where the Cjj3

�(m−s), 1
2 s

are Clebsch–Gordan coefficients. Similarly these states
are combined with isospinors |t〉I to form grand spin states

|G M j �〉 =
∑

t=± 1
2

CGM
j(j3−t), 1

2 t|j (j3 − t) �〉|t〉I . (5.30)

We define four-component grand spin spherical harmonic functions as the
projection Yj�(x̂) = 〈x̂|G M j �〉, where on the left-hand side we suppress
the conserved grand spin quantum numbers. The parity of Yj� is (−)� and
thus is determined by the orbital angular momentum, which may take values
� = G and G± 1. Next we have to combine the Yj�(x̂) with radial functions
to form Dirac spinors. For the channels with parity (−)G we have two spinors
that solve the Dirac equation away from the boundary3:

(
ig1(r)YG+ 1

2 ,G

f1(r)YG+ 1
2 ,G+1

)
and

(
ig2(r)YG− 1

2 ,G

f2(r)YG− 1
2 ,G−1

)
. (5.31)

For zero grand spin the second spinor is absent. In general these spinors have
eight components. The Dirac spinors with parity (−)G+1 have the four upper
and four lower components exchanged.

We will now compute the S-matrix in the parity (−)G channels. While
grand spin is conserved, the boundary condition in Eq. (5.28) mixes states
with different ordinary spin j. We introduce the linear combinations that
define the S-matrix:

Ψ1 =
(

iw+hG(kr)YG+ 1
2 ,G

w−hG+1(kr)YG+ 1
2 ,G+1

)
+ S+,G

11

(
iw+h∗G(kr)YG+ 1

2 ,G

w−h∗G+1(kr)YG+ 1
2 ,G+1

)

+S+,G
21

(
iw+h∗G(kr)YG− 1

2 ,G

−w−h∗G−1(kr)YG− 1
2 ,G−1

)
, (5.32)

Ψ2 =
(

iw+hG(kr)YG− 1
2 ,G

−w−hG−1(kr)YG− 1
2 ,G−1

)
+ S+,G

22

(
iw+h∗G(kr)YG− 1

2 ,G

−w−h∗G−1(kr)YG− 1
2 ,G−1

)

+S+,G
12

(
iw+h∗G(kr)YG+ 1

2 ,G

w−h∗G+1(kr)YG+ 1
2 ,G+1

)
, (5.33)

where h�(kr) refers to the spherical Hankel functions suitable to parameterize
an incoming spherical wave. We have also introduced the kinematic factors
w+ =

√
1 + m

ω and w− = sgn(ω)
√

1− m
ω , where ω = ±

√
k2 +m2 and m are

the energy and mass of the Dirac particle, respectively. In the case G = 0,
the components with j = G− 1

2 are absent and the S-matrix has only a single
component S+,0

11 = exp(2iδ+0 ).
Imposing the boundary condition, Eq. (5.28), on these wavefunctions gives

the condition
3 We adopt the standard representation for the γ-matrices in which γ0 is diagonal.
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(
cosθ ix̂ · τ sinθ − ix̂ · σ

ix̂ · τ sinθ + ix̂ · σ cosθ

)
Ψn

∣∣∣∣∣
r=R

= 0 . (5.34)

For each n = 1, 2 the projection onto grand spin spherical harmonics yields
two equations, which allows us to extract all four components of the S-matrix.
It is convenient to express the result in the form of a matrix equation:⎛

⎝X Y

X̄ Ȳ

⎞
⎠
⎛
⎝S

+,G
11 S+,G

12

S+,G
21 S+,G

22

⎞
⎠ = −

⎛
⎝X

∗ Y ∗

X̄∗ Ȳ ∗

⎞
⎠ ≡ −M(G)∗ , (5.35)

where the star denotes complex conjugation. For convenience we have not
made explicit the grand spin dependence of the matrix elements, which can
be computed from the Clebsch–Gordan coefficients in Eqs. (5.29) and (5.30)
[10, 11]:

X = h∗G(kR) cos θ +
k

ω +m

(
1 +

sin θ
2G+ 1

)
h∗G+1(kR)

X̄ = −h∗G(kR) cos θ +
k

ω +m

(
1 +

sin θ
2G− 1

)
h∗G−1(kR)

Y =
2
√
G(G+ 1)
2G+ 1

k

ω +m
h∗G−1(kR) sin θ

Ȳ =
2
√
G(G+ 1)
2G+ 1

k

ω +m
h∗G+1(kR) sin θ . (5.36)

The total phase shift in this grand spin channel is then given by

δ+G = −i ln
(
detS+,G

)
= −i ln

(
detM(G)∗

detM(G)

)
. (5.37)

For the channels with parity (−)G+1 the computation proceeds analogously
and yields δ−G .

It is now straightforward to collect the resulting total phase shifts. In the
G = 0 channel, the phase shifts in the two parity channels are

δ±0 (ω) = −i ln
(
ih1(kR)

k

±ω −m cos θ + ih0(kR)(1∓ sin θ)
)
. (5.38)

With this result, using Eq. (5.3) the contribution of the G = 0 channel to the
fermion number can be read off to be − θ

π . For G > 0 the total phase shift in
each channel is given by

δ±G(ω) = −i ln
(

sin θ
hG(kR)2

(ω ∓m)R
+

k

±ω −mhG(kR) (hG+1(kR)− hG−1(kR))

− cos2 θ

[
hG+1(kR)hG−1(kR)

(
k

±ω −m

)2

− hG(kR)2
])

. (5.39)
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Its contribution needs to be treated with care when summing over grand spin
to obtain the total charge,

Q = lim
Gmax→∞

Λ→∞
Q(Λ,Gmax) with

Q(Λ,Gmax) =
Gmax∑
G=0

(2G+ 1)
[
δ+G(Λ) + δ−G(Λ)− δ+G(−Λ)− δ−G(−Λ)

]
, (5.40)

where Λ is the momentum cutoff we use to regularize the theory. For large k,
the dominant contribution stems from G ≈ kR. We must follow a consistent
regularization procedure in order to obtain the correct order of limits for both
Gmax →∞ and Λ→∞. Our prescription is to first compute the total phase
shift at k = Λ, summed over all partial waves, i.e.,with Gmax →∞. This sum
then has a smooth limit as Λ→∞. If we had taken the limit in the opposite
order by considering the k → ∞ limit in each partial wave separately, we
would incorrectly conclude that the contribution from G > 0 was identically
zero.

To avoid mod(π) ambiguities in the numerical computation, it is conve-
nient to first consider dQ

dθ by differentiating Eqs. (5.38) and (5.39) and then
integrate to obtain Q as a function of θ. In Fig. 5.1 (taken from Ref. [4]), we
give an example of the numerical evaluation of dQ(Λ,Gmax)/dθ for particu-
lar values of θ and Gmax as a function of the cutoff, which is parameterized
in terms of the dimensionless variable z = ΛR. The contribution to dQ/dθ
from the channels G > Gmax is negligible for z � Gmax. For z ≈ Gmax/2 the
relation

dQ(Λ,Gmax)
dθ

= − 1
π

(1− cos 2θ) (5.41)

10 20 30 40 50 60
z

–0.6

–0.4

–0.2

0.2

Fig. 5.1 Numerical computation of d
dθ

G(Λ, Gmax) evaluated at θ = 3π
8

and m = 0,
summed up to Gmax = 32, and plotted as a function of z = ΛR. The horizontal line
shows the right-hand side of Eq. (5.41) for this value of θ
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is established numerically. For z � Gmax only the contribution from the
G = 0 channel, Eq. (5.38), is seen, which would lead to an incorrect result for
the charge. Thus integrating the right-hand side of Eq. (5.41) with respect
to θ yields our result for the charge of the bag boundary condition,

Q = − 1
π

(θ − sin θ cos θ) . (5.42)

This is the result Ref. [3] derived from a multiple reflection expansion for
the Green’s function of the bag model. Again we emphasize that an incorrect
regularization which sends the cutoff to infinity before summing over channels
would yield only the first term in (5.42).
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6 Hedgehog Configurations in d = 3 + 1

In this chapter we extend the approach of Chap. 4 to the case of three spatial
dimensions. First we study the coupling of a Higgs doublet to chiral fermions,
and then we generalize the background boson fields to an SUL(2) gauge
theory. We will again use a systematic expansion in � and 1/N in which
the dominant contribution arises from the fermion loop. Our goal is thus
to compute the one-fermion loop contribution to the vacuum polarization
energy.

6.1 Chiral Fermions

6.1.1 The Model

The model that we begin with consists of the Higgs sector of the standard
model coupled to a fermion doublet in 3 + 1 dimensions. Our goal is to
explore the possibility that within this model there is a non-trivial Higgs field
configuration with non-zero-fermion number whose energy is less than that
of a state with the same quantum numbers built on top of the perturbative
vacuum. The existence of such fermionic quantum solitons would provide an
attractive resolution to the decoupling puzzle in the standard model and other
chiral gauge theories. A fermion obtains its mass through Yukawa coupling
to the scalar Higgs via the well-known Higgs mechanism. Explicit mass terms
are forbidden by gauge invariance. So, as we increase the mass of a fermion we
also increase its Yukawa coupling, which gives a corresponding enhancement
to the interaction vertices. As a result, it may not decouple from the low-
energy theory. Moreover, the heavy fermion cannot simply disappear from the
spectrum, because then anomaly cancellation would be ruined. It is plausible,
however, that the large Yukawa coupling gives rise to a quantum soliton in
the low-energy theory, which carries the quantum numbers of the decoupled
fermion and maintains anomaly cancellation according to the mechanism
described by D’Hoker and Farhi [1].

As in the standard model, the fermions in our model acquire masses
through their Yukawa coupling to the Higgs field. However, we make two es-
sential simplifications of the full electroweak theory: we restrict all fermions
to have equal mass, and we neglect the coupling to the (electroweak) gauge
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(2009)
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fields. The latter restriction will be lifted in the next section, where gauge
field backgrounds will be introduced.

We write the Higgs doublet (ϕ0, ϕ+) in terms of a 2 × 2 matrix-valued
field as

Φ =
(
ϕ0 −ϕ∗

+

ϕ+ ϕ∗
0

)
. (6.1)

Then the Higgs Lagrangian is

LH =
1
4

tr
[(
∂μΦ

†) (∂μΦ)
]
− V (Φ), (6.2)

where
V (Φ) =

λ

16
(
tr
[
Φ†Φ
]
− 2v2

)2
. (6.3)

We take the vacuum expectation value to be

〈Φ〉 = v

(
1 0
0 1

)
(6.4)

and note that the Higgs particle has mass mH =
√
λv at tree level.

The chirally invariant coupling to the fermion doublet q = (t, b) is given
by

LHF = gq̄LΦqR + gq̄RΦ
†qL, (6.5)

which results in a tree-level massm = gv for both t and b. It is also convenient
to rewrite Φ in terms of four real (dimensionless) fields s and p as

Φ = v (s+ iτ · p) , (6.6)

which gives the d = 3 + 1 generalization of the interaction in Eq. (4.23),

LHF = mq̄ (s+ iγ5τ · p) q . (6.7)

Here and above τ represents the isospin Pauli matrices. With these defini-
tions, the classical energy is

Ecl[Φ] =
v2

2

∫
d3r

(
∂is∂is+ ∂ip · ∂ip +

λv2

4
(s2 + p 2 − 1)2

)
. (6.8)

6.1.2 The Fermion Loop

In order to compute the fermion vacuum polarization contribution to the total
energy we must first outline the renormalization process in the perturbative
sector of the model. To leading order in 1/N , quantum fluctuations—and
thus possible divergences—come exclusively from the fermion, as we saw in
the previous chapter [2]. The divergences can be canceled by counterterms of
the form

Lct = a tr
(
∂μΦ∂

μΦ†)− b tr
(
ΦΦ† − v2

)
− c tr

(
ΦΦ† − v2

)2
, (6.9)

where a, b, and c are cutoff-dependent constants. The Yukawa coupling g and
consequently the fermion mass m are not renormalized to this order.
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In terms of the shifted Higgs field h ≡ s−v, our renormalization conditions
are:

1. the vacuum expectation value of h vanishes, i.e., the VEV of the Higgs
field is fixed;

2. the position mH and the residue of the pole in the two-point function
for h do not acquire quantum corrections, i.e., mH is identified with the
physical Higgs mass.

In order to fix the counterterms, it is therefore sufficient to expand the
fermionic quantum correction to the action,

Seff [h] = −iTr ln {i∂/− g(v + h)} , (6.10)

up to quadratic order in h and combine the result with
∫
d4xLct. In dimen-

sional regularization we obtain

a=− g2

(4π)2

{
1
ε
− γ − 2

3
+ ln

(
4πμ2

m2

)

−6
∫ 1

0

dxx(1− x) ln
[
1− x(1− x)μ2

H

]}
(6.11)

b=−g
2m2

(4π)2

{
1
ε
− γ + 1 + ln

(
4πμ2

m2

)}
(6.12)

c=− g4

(4π)2

{
1
ε
− γ + ln

(
4πμ2

m2

)
− μ2

H

4
− 3

2

∫ 1

0

dx ln
[
1− x(1− x)μ2

H

]}
,

where d ≡ 4 − 2ε and μ is the scale required to keep the mass dimension
of the loop integrals at the physical value 4. Here we have introduced the
abbreviation μH = mH/m.

Having set up the model in the perturbative sector, we now turn to non-
trivial field configurations. We restrict our attention to the spherical ansatz
for the Higgs field, which is the famous hedgehog configuration [3]

Φ(x) = v [s(r) + iτ · x̂ p(r)] , (6.13)

with r =
√

x 2. With the standard representation of the Dirac matrices, the
corresponding Dirac operator becomes

hD =
(

ms(r) −iσ ·∇ +miτ · x̂ p(r)
−iσ ·∇−miτ · x̂ p(r) −ms(r)

)
, (6.14)

and the fermion field obeys the time-independent Dirac equation,

hDΨ = ωΨ . (6.15)

Note that the energy eigenvalue ω can assume both positive and negative
values. In general the spectrum of hD also contains both discrete (bound)
and continuum (scattering) states.
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Now we can obtain the bound states εj as the solutions to Eq. (6.15)
with |ω| < m. We use Levinson’s theorem to compute the number of bound
states in each channel from the phase shifts. The phase shifts, in turn, are
computed from the S-matrix, which is extracted from solutions to second-
order differential equations obtained from the Dirac equation. Because we
restrict our attention to backgrounds in the spherical ansatz , there are two
conserved quantum numbers, grand spin and parity. The grand spin G is
defined as the vector sum of isospin and total angular momentum (orbital
plus spin) and can be interpreted as a generalized angular momentum. The
parity Π is associated with space reflection in the usual way. The associated
generalized spherical spinors have already been defined in Sect. 5.4.

We obtain separate second-order differential equations for the upper and
lower components of the Dirac equation in the standard representation. After
projecting onto a subspace with definite energy, grand spin, and parity, we
are left with two coupled second-order differential equations for two radial
functions, say g1(r) and g2(r), cf. Eq. (5.31). Together, the linearly indepen-
dent solutions with incoming spherical wave boundary conditions in either
of these channels define a two-channel scattering problem. In the following
we will suppress the labels ω, G, and Π, which characterize this two-channel
problem. The two linearly independent boundary conditions are labeled by
j ∈ {1, 2} and are implemented as follows:

In the free case, the radial functions corresponding to outgoing waves in
each channel are Hankel functions, g1(r) = h

(1)
� (kr) and g2(r) = h

(1)
�′ (kr).

(Here � and �′ are determined from grand spin G and parity Π: In the
channel with parity Π = +(−1)G, we have � = �′ = G, while in the
channel Π = −(−1)G we have � = G + 1 and �′ = G − 1.) We de-
fine the two independent free spinor solutions in each channel by taking
{g1(r) = h

(1)
� (kr) , g2(r) ≡ 0} and {g1(r) ≡ 0 , g2(r) = h

(1)
�′ (kr)}. The Jost-

like boundary conditions are defined as a modification of the free asymptotic
solutions: For the boundary condition type j ∈ {1, 2}, we require that g(j)

i (r)
corresponds to a (phase-shifted) outgoing wave if i = j, while it vanishes at
large r for i �= j. To simplify the notation, we arrange the two radial wave-
functions for the two boundary conditions in matrix form, Gij(r) = g

(j)
i (r).

The boundary conditions are then formulated as a multiplicative modification
of the free matrix solution,

G (r) =
(
g
(1)
1 (r) g

(2)
1 (r)

g
(1)
2 (r) g

(2)
2 (r)

)
≡ F (r)H(kr) , (6.16)

where the free solution H is diagonal and can be expressed simply in terms
of Hankel functions,

H(x) =
(
h

(1)
� (x) 0

0 h
(1)
�′ (x)

)
. (6.17)

The elements of the 2× 2 matrix F (r) satisfy second-order differential equa-
tions obtained from the Dirac equation. In the standard representation of the
Dirac matrices they are of the general form
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F ′′ = −2
r
F ′ (1 + rL′(kr))+

s′

s± ω/m (F ′ + FL′(kr))−V F +[K,F ] (6.18)

for the upper and lower components respectively, where

K =
1
r2

(
�(�+ 1) 0

0 �′(�′ + 1)

)
(6.19)

is the centrifugal barrier with � and �′ as above. The 2×2 matrix V describes
the coupling of the fermions to the Higgs background,

V11 = −m2
[
s2 + p2 − 1

]
+
G

r

s′

s+ ω
m

− mp′

2G+ 1

−2
r

(G+ 1)mp
2G+ 1

+
mp

2G+ 1
s′

s+ ω
m

,

V22 = −m2
[
s2 + p2 − 1

]
− G+ 1

r

s′

s+ ω
m

+
mp′

2G+ 1

−2
r

Gmp

2G+ 1
− mp

2G+ 1
s′

s+ ω
m

,

V12 = V21 =
2
√
G(G+ 1)
2G+ 1

[
mp′ +mp

(
1
r
− s′

s+ ω
m

)]
. (6.20)

In Eqs. (6.18) and (6.20) the primes denote derivatives with respect to the
radial coordinate r.

The matrix L = ln H is the only remnant of the Hankel functions,

L(x) =
(

ln h(1)
� (x) 0
0 ln h(1)

�′ (x)

)
. (6.21)

Notice that only the derivative L′ = k dL(x)/dx|x=kr, whose matrix elements
can be expressed as simple rational functions, appears in Eq. (6.18). As a
result we avoid any instability in the numerical treatment that would be
caused by the oscillating Hankel functions.

The 2×2 submatrix of the S-matrix for the Π = (−1)G channel is defined
in Eqs. (5.32) and (5.33). The Π = −(−1)G case is defined in the analogous
way. These submatrices are most conveniently constructed by superimposing
solutions to Eq. (6.18). First we normalize F by imposing the boundary
conditions F (r → ∞) = 1 and F ′(r → ∞) = 0. Given these boundary
conditions and the fact that the second-order differential equations for the gi

are real, the actual scattering wavefunction can be written as

Ψsc = −F ∗(r)H∗(kr) + F (r)H(kr)S, (6.22)

where S is the 2× 2 submatrix of the S-matrix that we seek. Requiring that
the scattering solution be regular at the origin yields

S = lim
r→0

H−1(kr)F−1(r)F ∗(r)H∗(kr) . (6.23)
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The quantity that enters the density of states is the total phase shift

δ(k) =
1
2i

tr ln S =
1
2i

lim
r→0

tr ln
(
F−1(r)F ∗(r)

)
, (6.24)

from which the Hankel matrix H cancels because as r → 0 the leading
(singular) piece of H(kr) is real, i.e., limr→0 H

∗(kr)H−1(kr) = 1. The uni-
tarity of S guarantees that Eq. (6.24) yields a real phase shift.

Equation (6.24) only gives the phase shift modulo π. Of course, δ(k)
should be a smooth function that vanishes as k → ∞. An efficient way to
avoid spurious jumps by π in the numerical calculation of δ(k) is to define

δ(k, r) ≡ 1
2i

tr ln
[
F−1(r)F ∗(r)

]
. (6.25)

This is the multi-channel generalization of the variable phase method in
Eq. (1.21). We then include

dδ(k, r)
dr

=
1
2i

tr
[(

d

dr
F ∗(r)

)
F ∗−1(r)−

(
d

dr
F (r)

)
F−1(r)

]
(6.26)

in the numerical routine that integrates the differential equations for F , with
the boundary condition limr→∞ δ(k, r) = 0. Then δ(k) ≡ limr→0 δ(k, r) is a
smooth function of k that goes to zero as k →∞.

Finally, the general formalism for computing the vacuum polarization
energy, Eq. (3.27), requires the Born series for δ(k). We introduce F (ns,np)(r),
where ns = 0, 1, . . . and np = 0, 1, . . . label the order in the expansion around
s(r) = 1 and p(r) = 0, respectively. Obviously, F (0,0)(r) = 12. Then we find
for the first two orders

δ(1)(k) =
1
2i

lim
r→0

tr
[
F (1)∗(r)− F (1)(r)

]
(6.27)

δ(2)(k) =
1
2i

lim
r→0

tr
[
F (2)∗(r)− F (2)(r)− 1

2
[F (1)(r)]2 +

1
2
[F (1)∗(r)]2

]
,

where F (n)(r) =
∑n

m=0 F
(m,n−m)(r). Note that these Born terms do not

suffer from any π ambiguity. Subtracting these two terms from the full
phase shift eliminates the quadratic divergence from the vacuum polarization
energy. Eliminating the logarithmic divergence would be considerably more
complicated because an expansion up to fourth order in ns + np would
be necessary.1 Instead we follow the method of [4] and subtract the Born
approximation to a “fake” boson field with the same logarithmic divergences
as the full fermion theory. We then compensate for this subtraction by includ-
ing the corresponding diagram for this field, so that it implements the correct
renormalization conditions for the full model. The resulting expression for the
vacuum polarization energy, Eq. (3.27), then becomes
1 When restricting to field configurations with ΦΦ† = v2, two subtractions are

sufficient [5, 6].
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Evac = −1
2

∑
j

(2Gj + 1)|εj | −
∫ ∞

0

dk

2π

√
k2 +m2

d

dk
δ̄(k) + E

(2)
ct + E

(4)
log,ct ,

(6.28)

δ̄(k) =
∑

G,σ,Π

(2G+ 1)
(
δG,σ,Π(k)− δ(1)G,σ,Π(k)− δ(2)G,σ,Π(k)

)
(6.29)

−m4

(
1
m

arctan
m

k
+

k

k2 +m2

)

×
∫ ∞

0

dr r2
[(
s(r)2 + p(r)2 − 1

)2 − 4(s(r)− 1)2
]
,

E
(2)
ct =

m2

π2

∫ ∞

0

dq q2
[
h2(q) + p2(q)

] {
q2 +m2

H

− 6
∫ 1

0

dx
[
m2 + x(1− x)q2

]
ln

m2 + x(1− x)q2
m2 − x(1− x)m2

H

}

− m4

π2

∫ ∞

0

dq q2p2(q)
{
μ2

H + 2
∫ 1

0

dx
[
3 ln

(
1− x(1− x)μ2

H

)

− 2 ln
(

1 + x(1− x) q
2

m2

)]}
, (6.30)

E
(4)
log,ct =

m4

8π

(
μ2

H + 6
∫ 1

0

dx ln
[
1− x(1− x)μ2

H

])

×
∫ ∞

0

dr r2
[(
s(r)2 + p(r)2 − 1

)2 − 4(s(r)− 1)2
]
. (6.31)

The last term in δ̄(k) implements the subtraction of the logarithmic diver-
gence and is compensated by the terms in E

(4)
log,ct [4]. The label σ = ±1

denotes the sign of the energy eigenvalue, so that ω = σ
√
k2 +m2. We have

also introduced the Fourier transforms

h(q) =
∫ ∞

0

dr r2 j0(qr) [s(r)− 1] and p(q) =
∫ ∞

0

dr r2j1(qr)p(r) ,

(6.32)
where jl(qr) are spherical Bessel functions.

To find the fermion number carried by the background field we apply
the techniques developed in Chap. 5. In each channel, we compare the
number of positive-energy bound states, n(+)

G,Π , with the number of bound
states that have left the positive-energy continuum, 1

π
δG,+,Π(0). If one level

originating in the positive-energy continuum crosses zero, we will find that
n

(+)
G,Π = 1

π
δG,+,Π(0) − 1. Then that channel contributes (2G + 1) to the po-

larized vacuum charge. In total, the vacuum charge is given by

Qvac =
∑
G,Π

(2G+ 1)
[

1
π
δG,+,Π(0)− n(+)

G,Π

]

= −
∑
G,Π

(2G+ 1)
[

1
π
δG,−,Π(0)− n(−)

G,Π

]
. (6.33)



110 6 Hedgehog Configurations in d = 3 + 1

The second equation reflects the equivalent counting procedure for negative-
energy states. We are interested in configurations with fermion number 1. If
Qvac = 0, the fermion number is obtained by explicitly occupying a level,
which we will choose as the level with the largest binding to minimize the
energy cost. If Qvac = 1, the polarized vacuum already provides the fermion
number and none of the bound states needs to be occupied explicitly.

6.1.3 Numerical Analysis

Our formalism is set up to allow the consideration of an arbitrary background
Φ(x) of the form (6.13). However, as in all variational methods, we limit
ourselves to variation of a few parameters in an ansatz motivated by physical
considerations. We will scale energies and lengths in terms of the fermion
mass m and choose a four-parameter ansatz

s+ iτ · p = ρ(ξ) exp [i(τ · x̂)Θ(ξ)]

ρ(ξ) = 1 + b1

[
1 + b22

ξ

w

]
exp
(
−b22

ξ

w

)

Θ(ξ) = −π c− 1
c− 3 + 2cξ/w

, (6.34)

where ξ = mr and the variational parameters are w, b1, b2, and c. Note that
Θ(0) = −π, ρ(0) = 1 + b1, and both ρ − 1 and Θ go to zero exponentially
as ξ →∞, since we expect a Yukawa tail. As long as ρ does not vanish, this
background has winding number one. The profile Θ(ξ) satisfies Θ(w) = −π/3,
irrespective of the variational parameters; we consider this the definition of
the width w. Furthermore, we have ensured that d

dξ
ρ(ξ)

∣∣
ξ=0

= 0, as required
by the classical equations of motion.

In terms of ρ(ξ) and Θ(ξ), the classical energy Eq. (6.8) is

Ecl =
2mπ
g2

∫ ∞

0

dξξ2

[(
dρ

dξ

)2

+
(
ρ
dΘ

dξ

)2

+
2
ξ2

sin2Θ +
μ2

H

4
(
ρ2 − 1

)2]

≡ m

g2
Ecl(w, b1, b2, c) . (6.35)

Then the total energy, Etot, of the configuration with fermion number 1 is

Etot

m
=

1
g2

Ecl(w, b1, b2, c) + (1−Qvac) ε1(w, b1, b2, c) + Evac(w, b1, b2, c),

(6.36)
where Evac = Evac/m, and ε1 = ω1/m is the energy eigenvalue of the most
strongly bound state. Note that in our scaling, for fixed μH the coupling g
appears only in the coefficient of the classical term.
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Configurations with Θ(0) = −π and Θ(∞) = 0 tend to strongly bind a
state originating from the positive continuum in the GΠ = 0+ channel. For w
large enough, this bound state will cross zero, causing the polarized vacuum
charge to be Qvac = 1. In that case the level is not explicitly occupied and
the corresponding term drops out of Eq. (6.36).

(a) Sample Numerical Calculations
For a given set of variational parameters, we first compute the phase shifts

and perform the subtractions according to Eq. (6.29), which allows us to carry
out the momentum integral in Eq. (6.28). Using Levinson’s theorem, we then
find the number of bound states in a given channel from δG,σ,Π(k = 0) and
use shooting methods to compute the bound state energies εj once we know
how many states to look for. In terms of the scaled variables, the bound state
and phase shift contributions in Eq. (6.28) depend on ansatz parameters,
but not on model parameters. The dependence on model parameters is com-
pletely contained in Ecl/g

2, E
(2)
ct = E

(2)
ct /m, and E

(4)
log,ct = E

(4)
log,ct/m, which

are simple integrals involving the background fields. Hence an efficient strat-
egy is to choose a set of variational parameters and then consider the total
energy as a function of the model parameters for that particular background
configuration. In Fig. 6.1 we display a typical result for the total energy as a
function of the Yukawa coupling g.

The existence of configurations with total energy Etot/m < 1 shows that
there is a stable soliton whose energy is at most Etot. Apparently a size-
able Yukawa coupling g is needed to obtain a stable soliton. However, as we
will discuss later, our model is not reliable for such large Yukawa couplings
because the Landau pole appears at an energy scale comparable to 1/w.

In Fig. 6.2 we display the total energy as a function of the depth param-
eters b1 and b2, for various values of the Yukawa coupling constant g and
typical values of the remaining variational parameters w and c. We observe
a shallow local minimum in the vicinity of b1 = −0.8 for small and moder-
ate values of g. However, at this minimum the total energy is larger than the
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Fig. 6.1 The total energy as a function of the Yukawa coupling constant g with
mH = 0.35v
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Fig. 6.2 Total energy as a function of the depth parameters b1 and b2 with
mH = 0.35v and for various values of the Yukawa coupling constant g

mass m of the free fermion. For larger g, we obtain a total energy less than m
for configurations with b1 ≈ 0. Configurations with b1 > 0 are more strongly
bound, but the one-fermion loop approximation fails for such configurations
because the energy functional is not bounded from below. This caveat is
exhaustively discussed in Appendix C of Refs. [4] and [7]. We have therefore
restricted the space of variational parameters to configurations for which the
vacuum is stable to one-loop order.

We observe a similar behavior for Etot as a function of b2. There exists a
local minimum for small and moderate g that does not yield a bound soliton.
For large g, a bound soliton seems possible if b2 is big enough. In this case,
the vacuum is stable at one-loop order for these values of the variational
parameters. Note that when we find a marginally bound configuration, the
vacuum polarization contribution to the energy Evac tends to almost exactly
compensate for the gain from binding a single level.

(b) Comparison with the Derivative Expansion

In order to check our computation of the vacuum polarization energy, in
particular our simplified treatment of the logarithmic divergence, we have
compared our results with the derivative expansion. The relevant formulae
are provided in Appendix C of Ref. [4], see also Refs. [8, 9]. Denoting by Egrad

the energy computed to second order in the derivative expansion, we list the
quantity

Δ1 ≡
Ecl + Evac − Egrad

Ecl + Evac + Egrad
(6.37)

as a function of the width parameter w in Table 6.1. The other variational
parameters are kept at constant values c = 2.72, b1 = −0.4, and b2 = 1.0.
Also, we consider various values for the Yukawa coupling constant g.

The quantity Δ1 measures the relative deviation of our (exact) result
from the second-order derivative expansion. From Table 6.1, we conclude
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Table 6.1 Comparison of the classical and renormalized vacuum polarization
energy with the derivative expansion, cf. Eq. (6.37)

w 1.0 2.0 2.5 3.0

g = 5.0 –0.127 –0.024 –0.008 0.003
g = 10.0 –0.240 –0.041 –0.013 0.005
g = 15.0 –0.287 –0.048 –0.015 0.007
g = 20.0 –0.308 –0.050 –0.015 0.006

that our calculation is in excellent agreement with the derivative expansion
at large w, where the leading terms of the derivative expansion give reliable
results. This agreement is an important check on our computational method
and, in particular, tests our treatment of renormalization, since the derivative
expansion is renormalized in the conventional way. On the other hand, it is
clear from Table 6.1 that the second-order derivative expansion cannot be
trusted for w ≈ 1.0, i.e., for background configurations whose extension is
close to the Compton wavelength of the fermion.

(c) The Landau Pole
From these results one might conclude that a soliton takes over the role

of the lightest fermion once the Yukawa coupling constant g becomes large
enough. The positive contribution to the total energy from Ecl in Eq. (6.35),
which disfavors the soliton, decreases quickly for large g. However, for large
couplings the model itself becomes ill-defined. Since the model is not asymp-
totically free, it has a Landau singularity in the ultraviolet, signaling new
dynamics at some cutoff scale. Thus the Landau pole sets a minimum dis-
tance scale below which the model is not consistent. Solitons that are large
compared to this scale are relatively insensitive to the unknown dynamics
at the cutoff scale, but solitons whose size is comparable to this scale can-
not be trusted. In this section we will discuss the emergence of the Landau
pole and estimate its effect on the vacuum polarization energy by comparing
the present results with a calculation that removes this pole. Although this
removal is somewhat ad hoc, it nevertheless provides some insight into the
reliability of the computations in case of large g.

Denoting the Fourier transforms of [s(r)− 1] and p(r) by h(q) and p(q),
respectively, the contribution of the two-point function to the total energy
can be written as

E2 =
v2

2

∫
d3q

(2π)2
{
G−1

h (−q 2)h(q)h(−q) +G−1
p (−q 2)p(q) · p(−q)

}
,

(6.38)
where

G−1
h (q2) =

v2

2

{(
q2 −m2

H

)(
1 +

g2

4π2

)

+
g2

4π2
6
∫ 1

0

dx
[
m2 − x(1− x)q2

]
ln

m2 − x(1− x)q2
m2 − x(1− x)m2

H

}
, (6.39)
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G−1
p (q2) =

v2

2

{
q2
(

1 +
g2

4π2

)

+
g2

4π2

[
6
∫ 1

0

dx
[
m2 − x(1− x)q2

]
ln

m2 − x(1− x)q2
m2 − x(1− x)m2

H

+2m2

∫ 1

0

dx ln

(
1− x(1− x)m2

H

m2

)3

(
1− x(1− x) q2

m2

)2

]}
, (6.40)

which includes classical, loop, and counterterm contributions. The form fac-
tor Gp(q2) has a pole (the Landau ghost pole) at space-like q2 = −m2

G with
residue ZG. The pole location is easily obtained numerically from the con-
dition G−1

p (q2 = −m2
G) = 0. In the vicinity of q2 ≈ −m2

G we have the
expansion

G−1
p (q2) =

1
ZG

(
q2 +m2

G

)
+O

(
q2 +m2

G

)2
, (6.41)

with

1
ZG

=
∂

∂q2
G−1

p (q2)
∣∣∣
q2=−m2

G

=
v2

2

{
1− g2

4π2

[
6
∫ 1

0

dxx(1− x) ln
m2 + x(1− x)m2

G

m2 − x(1− x)m2
H

−4
∫ 1

0

dx
x(1− x)

m2 + x(1− x)m2
G

]}
. (6.42)

The existence of this pole yields an unphysical negative contribution to the
total energy at large spatial momenta q, or equivalently for narrow back-
ground field configurations. Based on the Källén–Lehmann representation
for the two-point function, the authors of Ref. [10] suggested a procedure to
eliminate the Landau pole while maintaining chiral symmetry. They replace
Eq. (6.38) with

Ē2 =
v2

2

∫
d3q

(2π)2
Δ−1

p (−q 2) {h(q)h(−q) + p(q) · p(−q)} , (6.43)

where Δp(q2) = Gp(q2) − ZG/(q2 +m2
G) removes the Landau pole. We can

easily adopt this procedure since we have already extracted the loop and
counterterm contributions from the two-point function in Eq. (6.30). That
is, we replace Ecl + E

(2)
ct , which enters Eq. (6.36), by Ē2 + E

(3,4)
cl , with

1
m
E

(3,4)
cl =

πm2
H

2m2g2

∫ ∞

0

dxx2
{[

2(s− 1) + (s− 1)2 + p 2
]2 − 4(s− 1)2

}
.

(6.44)
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Fig. 6.3 The Landau pole subtraction, for mH = 0.35v and g = 12

In Fig. 6.3 we show the effect of this replacement as a function of the width
parameter w for g = 12, which is in the region where a bound soliton can oc-
cur. For small w, we observe that the original computation, Eq. (6.38), gives
a negative contribution. However, for small w there are only weakly bound
states and the vacuum is almost undistorted. The relative contribution from
the classical energy is also small since g is large. Hence the total energy is
dominated by the renormalized Feynman diagram contribution E(2)

ct +E(4)
log,ct,

which can be negative due to the Landau pole. Thus for small w and large
g, the Landau pole dominates the binding of the soliton, and, even worse,
the total energy could be negative, reflecting an unphysical vacuum instabil-
ity [11]. Using the above prescription to eliminate this pole, the total energy
turns out to be positive for all values of w, so the instability is removed. As
can be seen from Fig. 6.3, for sensible w this prescription increases the total
energy by about 0.25 m for the parameters chosen, which in turn unbinds
the soliton. We conclude that the solitons found at large g are principally
bound by unphysical effects associated with the Landau singularity, and not
by reliable dynamical properties of the model.

(d) Scalar Backgrounds

We finish the numerical analysis with a calculation of the total
energy when only a scalar background field s(r) is present. Our goal is a brief
comparison with the results of Ref. [7, 12], rather than a complete study.
For p ≡ 0 the Dirac Hamiltonian is charge conjugation invariant. Hence the
charge carried by the background field is zero and we must explicitly occupy
the most strongly bound state. In Fig. 6.4 we show typical results of the
numerical calculation for the total energy as a function of the coupling con-
stant. A slightly bound soliton emerges even for modest values of the Yukawa
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Fig. 6.4 The total energy with only the scalar background as a function of the
Yukawa coupling constant g with mH = 0.35v. Note that the variational parame-
ter c is irrelevant without pseudoscalar fields

coupling. Its energy is up to 5% less than that of a fermion in the background
of the translationally invariant scalar field. In this case, the Landau ghost sin-
gularity in Gp (cf. Eq. (6.40)) is irrelevant and we may trust the calculation
even for small w. Furthermore, the second-order derivative expansion deviates
from the full calculation by only a fraction of a percent even at moderate val-
ues of the width parameter, w ≈ 1.5. Plotting the results from the derivative
expansion would yield indistinguishable curves in Fig. 6.4. We thus confirm
the findings of Ref. [7, 12], which used the derivative expansion to find a
slightly bound soliton.

6.2 SUL(2) Gauge Theory

Next we extend our model to include SU(2)-valued gauge fields, Aμ = Aμ · τ2 .
The classical Lagrangian now includes a gauge kinetic term

LG = −1
2
tr (FμνFμν) , (6.45)

which contains the field strength

Fμν = ∂μAν − ∂νAμ − ig2 [Aμ, Aν ] (6.46)

and thus defines the gauge coupling g2. Furthermore, the Higgs field couples
minimally to the gauge fields by extending the partial derivatives in Eqs. (6.2)
and (6.10) to covariant ones,

DμΦ = (∂μ − ig2Aμ)Φ , (6.47)

while only the left-handed fermions couple to the gauge fields:

LF = ΨLiγ
μDμΨL + ΨRiγ

μ∂μΨR − g
(
ΨLΦΨR + h.c.

)
. (6.48)
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Ultraviolet divergences in our fermion loop calculation are compensated by
counterterms

L(ct)
H = c1tr (FμνFμν) + c2tr

(
[DμΦ]†DμΦ

)

+ c3
[
tr
(
Φ†Φ
)
− 2v2

]
+ c4

[
tr
(
Φ†Φ
)
− 2v2

]2
, (6.49)

which are formally identical to terms in the original Lagrangian. To fix the
finite pieces in the coefficients ci we impose the following renormalization
conditions:

a. We choose the vacuum expectation value of h(x) to vanish. Then the VEV
〈Φ〉 = v1 stays fixed at its classical value and the perturbative fermion
mass does not get renormalized, i.e., mf = m

(0)
f = vg. This “no-tadpole”

renormalization condition determines c3.
b. We fix the pole of the Higgs propagator to be at the tree-level mass,

mh = m
(0)
h = v

√
λ, with residue one. The Higgs self-interaction strength

λ is defined in Eq. (6.3). These conditions yield c2 and c4.
c. There are various choices to fix the remaining undetermined counterterm

coefficient c1. We choose to set the residue of the pole of the gauge field
propagator to 1 in unitary gauge, implying the proper normalization of
physical one-particle gauge field states. Then the position of this pole,
i.e., the mass mw of the gauge field, is a prediction,

m2
w =

(
m(0)

w

)2
[
1 +

g2

8π2

{
2
3
− m2

w

m2
f

(
1
6
−
∫ 1

0

dxx2(1− x)2 m2
w

Δ(x,m2
w)

)

+ 6
∫ 1

0

dxx(1− x) ln
Δ(x,m2

h)
m2

f

−
∫ 1

0

dx ln
Δ(x,m2

w)
m2

f

}]
, (6.50)

with Δ(x, q2) ≡ m2
f − x(1 − x)q2, where m

(0)
w = gv/

√
2 is the tree-level

perturbative mass of the gauge fields.
Before evaluating vacuum polarization energies we discuss classical gauge

field configurations inspired by the topological structure of the model, which
will provide useful starting points in our variational search for quantum soli-
tons.

6.2.1 Classical Sphalerons

There are several configurations of gauge and Higgs fields that solve the
classical equations of motion. We sketch a general prescription that uses
topologically non-trivial maps into the gauge group to find known solutions
in the Euclidean theory and motivate the existence of new ones. The basic
idea is due to Manton [13] with generalizations by Klinkhamer [14].



118 6 Hedgehog Configurations in d = 3 + 1

A finite Euclidean-action configuration is pure gauge at spacetime infinity:

A(∞)
μ =

i

g
U∂μU

† together with Φ(∞) = vU . (6.51)

Here U maps the spacetime boundary to SU(2).
The third and fourth homotopy groups of SU(2) are non-trivial:

Π3(SU(2)) = Z , Π4(SU(2)) = Z2 . (6.52)

The maps from S3 into SU(2) fall into classes labeled by an integer, and any
map in a given class cannot be deformed continuously into a map from a
distinct class. Similarly, each map from S4 into SU(2) belongs either to the
trivial class (which contains the trivial map) or the non-trivial class.

We take topologically non-trivial maps into SU(2) and identify a subspace
of the domain with the spacetime boundary. The remaining coordinates in the
domain are interpolation parameters that define a sequence of configurations.
The sequence becomes a loop when we restrict the configurations on the
boundary of the interpolation space to be trivial, i.e.,Aμ = 0, Φ = v1. The
non-trivial topology prevents the loop from shrinking to a point. The top
of the tightest non-contractible loop is expected to be an unstable solution,
which is generically referred to as a sphaleron.

For example, we consider a winding number one map from S3 (parame-
terized by the angles β1, β2, α) to SU(2):

U (1)(β1, β2, α) = eiβ1τ3 [cos(β1)1 + i sin(β1) cos(β2)τ3+
i sin(β1) sin(β2){cos(α)τ1 + sin(α)τ2}] , (6.53)

where βi ∈ (0, π) and α ∈ (0, 2π). When we identify an S2 subspace of the
domain with the space boundary, we get a sequence of maps from the space
boundary to SU(2):

Uβ1(θ, φ) = U (1)(β1, θ, φ) , (6.54)

where θ, φ parameterize the spatial boundary and the remaining coordinate,
β1, is the interpolation parameter. Uβ1 defines a sequence of asymptotic con-
figurations (using Eq. (6.51)), which can be smoothly continued into the
bulk of space for each β1. The configurations at the end points of the se-
quence (β1 = 0, π) are trivial because Uβ1 is the identity at the end points.
Since U (1) has non-zero winding number, the loop we have constructed is
non-contractible. Therefore, we can extend the asymptotic configuration at
β1 = π/2 to the weak sphaleron [13, 15], the unstable, static solution at the
top of the tightest loop. The sphaleron is the lowest barrier between topo-
logically inequivalent vacua, and its energy determines the rate of fermion
number violating processes at temperatures comparable to the electroweak
phase transition scale.
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As another example, we can identify the whole domain of the map in
Eq. (6.53) with the boundary S3 ≡ ∂R3 of spacetime so that there are
no remaining interpolation parameters. Then we have a topologically stable
solution—the weak instanton [16]. It describes fermion number violation via
tunneling. Alternatively, we may consider static configurations with one triv-
ial dimension (say z) and identify an S1 subspace of the S3 domain with
the boundary ∂R2 ≡ S1 of the x − y plane. In this way, we get a two-
parameter non-contractible loop of configurations, the top of which is the
W-string [17, 18]. We discuss such configurations in detail in Chap. 8.

Using the above procedure for a winding number n map from S3 to SU(2)
indicates the existence of multi-instantons, multi-sphalerons [19], and winding
number n W-strings. Finally, if we use a non-trivial map from S4 to SU(2)
to construct non-contractible loops, there is evidence for a number of novel
solutions: (i) I∗, a topologically trivial Euclidean solution with one unstable
direction [20]; (ii) S∗, a static solution with two unstable directions [21];
and (iii) W ∗, a static solution with one trivial dimension and three unstable
directions.

Note that these topological arguments do not guarantee the existence
of the solutions described above, because the configuration space is a non-
compact manifold and the non-contractible loops may run off to infinity. Nor
is it clear that two different loops give two distinct solutions. Nevertheless,
the topology points to possible solutions in the vast configuration space. Once
we know where to apply the variational approach, we can verify whether a
solution exists.

6.2.2 Energetically Stabilized Solitons

We advance the search of Sect. 6.1.3a for solitons stabilized by quantum dy-
namics (the analog of the one-dimensional solitons we found in Sect. 4.4)
by extending to the SUL(2) model. Then the potential for strong bind-
ing emerges from the sphaleron-type configurations having the tendency to
tightly bind fermions. We generalize to configurations that have fermion num-
ber Nf and compute the effective energy

E
(Nf )
eff [C] = Ecl[C] +Eren

vac[C] +E
(Nf )
occ [C] (6.55)

carried by a configuration C = {A,Φ}. An energetically stabilized soliton
exists when E

(Nf )
eff [C] < mfNf , where mf is the mass of the perturbative

fermion. The classical energy, Ecl, is straightforwardly computed from the
action, cf. Eq. (6.61). The computation of the renormalized vacuum polar-
ization energy, Eren

vac, follows that of Sect. 6.1.2 but is more laborious since
more fields are involved. For the gauge fields an additional complication
arises because the anomalous fermion number violation must be accounted
for when identifying the induced vacuum fermion number, Nvac

f . These issues
are discussed thoroughly in Ref. [22]. The resulting Nvac

f is crucial for the
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precise definition of E(Nf )
occ , the energy contribution from occupying fermion-

bound states. Only Nf − Nvac
f levels must be filled to accommodate total

fermion number Nf . To minimize E(Nf )[C] we fill the levels with the lowest
energy eigenvalues of the single-particle Dirac Hamiltonian, extracted from
Eq. (6.48).

6.2.3 The Search for the Soliton

In this section we describe our search for the soliton with the Higgs and gauge
field background. Our goal is to find the configuration Cmin that minimizes
the effective energy, Eq. (6.55), for fixed fermion number. We first review
the spherical ansatz for the gauge and Higgs fields and then outline the
restrictions imposed on the variational ansätze used to search for a soliton.
Finally, we explore the energy surface for two physically motivated sets of
ansätze: the “twisted Higgs” and “paths over the sphaleron.” Throughout
this section the perturbative fermion mass is set to one so that energies and
lengths are measured in units of mf and 1/mf , respectively.

(a) The Spherical Ansatz

We consider static gauge and Higgs fields in the spherical ansatz. This
enables us to expand the fermion S-matrix in terms of partial waves labeled
by the grand spin G as explained in Sect. 6.1.2. Under these restrictions (and
in the Weyl gauge A0 = 0, which for smooth fields can always be obtained
by a non-singular gauge transformation), the fields are expressed in terms of
five real radial functions:

Ai(x) = −Ai(x) =
1
2g

[
a1(r)τj x̂j x̂i +

α(r)
r

(τi − τj x̂j x̂i) +
γ(r)
r
εijkx̂jτk

]
,

Φ(x) = v [s(r) + ip(r)τj x̂j ] , (6.56)

where x̂ is the unit three vector in the radial direction. Let us consider the
transformation properties of the ansatz under a U(1) subgroup of the full
SU(2) gauge symmetry of the form

g(x) = eif(r)τ ·x̂/2 . (6.57)

Then a1 behaves as a one-dimensional vector field, s+ ip as a complex scalar
with charge 1/2, and α + i(γ − 1) as a complex scalar with charge 1. It is
thus convenient to introduce the moduli ρ,Σ and phases θ, η for the charged
scalars:

− iρeiθ ≡ α+ i(γ − 1) and Σeiη ≡ s+ ip . (6.58)

For the gauge transformation g(x) in Eq. (6.57) to be non-singular, we require
f(0) = −2nπ, where n is an integer, which we denote as a superscript: f(r) ≡
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f (n)(r). If f (n)(r) is restricted to be 0 as r → ∞ (which is equivalent to
g(r → ∞) = 1) then n is the winding of the map g(x) : S3 → SU(2). So
the topology of the zero-classical-energy configurations can also be realized
within the spherical ansatz. A prototype of winding number n zero-classical-
energy configuration of Eq. (6.51) is

ρ(r) = 1 , Σ(r) = 1 ,

θ(r) = f (n)(r) , η(r) =
f (n)(r)

2
, a1(r) = f (n)′(r) . (6.59)

Regularity of Ai(x) and Φ(x) at x = 0 requires that

ρ(0) = 1 , ρ′(0) = 0 ,

θ(0) = −2nθπ , a1(0) = θ′(0) , and

Σ(0) = 0 or η(0) = −nηπ .

(6.60)

Here nθ, nη are integers and primes denote derivatives with respect to the
radial coordinate. For this spherical ansatz the classical energy associated
with the bosonic Lagrangian, Eqs. (6.2) with (6.47) and (6.45), reads

Ecl = 4π
∫ ∞

0

dr

{
1
g2
2

[
ρ′

2
+ ρ2(θ′ − a1)2 +

(ρ2 − 1)2

2r2

]

+
1
f2

[
r2Σ′2 + r2Σ2(η′ − 1

2
a1)2 +

r2

4
m2

h(Σ2 − 1)2

+
1
2
Σ2

(
(ρ− 1)2 + 4ρ2 sin2 θ − 2η

2

)]}
. (6.61)

Since we want the Higgs and gauge fields to have finite classical energy, we
require a field configuration of the form Eq. (6.59) as r →∞. The restriction
that f (n)(∞) = 0 uniquely specifies the boundary conditions on the fields at
infinity. At x = 0, the boundary conditions on ρ specified in Eq. (6.60) make
the energy density finite without any additional constraints.

(b) Restrictions on the Variational Ansätze
We may consider any static, spherically symmetric configuration, C, in

the Higgs gauge sector specified by the five real functions a1(r), ρ(r), θ(r),
Σ(r), and η(r). In principle, we could numerically minimize the fermionic
energy, E(1)

eff [C], in terms of the five functions and determine if a soliton
exists. Since an exhaustive search is impractical we vary a few parameters in
ansätze motivated by physical considerations. In addition to the boundary
conditions we have discussed, we restrict the Higgs fields to lie within the
chiral circle, Σ(r) < 1, because, as we have already mentioned, otherwise the
effective potential is unbounded from below. As explained in Sect. 6.1.3, the
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effective theory has a Landau pole in the ultraviolet, reflecting new dynamics
at some cutoff energy scale or equivalently at a minimum distance scale.
Configurations that are large compared to this distance scale are relatively
insensitive to the new dynamics at the cutoff, but smaller configurations are
sensitive. For small widths and large couplings, the Landau pole becomes
significant and leads to unphysical negative effective energies via Eren

vac in
Eq. (6.55) [11]. We have to be wary of this limitation when we estimate the
reliability of our results.

(c) Twisted Higgs

Even without gauge fields, twisted Higgs configurations with n = 1 tend
to strongly bind a fermion level, cf. Sect. 6.1.3. The existence of this tightly
bound level makes such twisted Higgs configurations attractive candidates
for the variational search also in the presence of gauge fields.

It is handy to consider one such twisted Higgs configuration with a width
characterized by a variational parameter w,

η = −πe−r/w (6.62)

and add various perturbations to it. For instance, we consider a four-
parameter ansatz (in the gauge θ = 0) with parameters p0, . . . , p3:

η = −πe−r/w + p0
r/w

1 + (r/w)2
e−r/w , Σ = 1 + p1

1
1 + (r/w)

e−r/w ,

a1 = p2
r/w

1 + (r/w)2
e−r/w , ρ = 1 + p3

(r/w)2

1 + (r/w)3
e−r/w ,

(6.63)

where −1 < p1 < 0 (to keep the Higgs field within the chiral circle and its
magnitude positive) and p3 > −5.23 (to keep ρ positive). For a prescribed
set of theory parameters (mw,mh, and f) we determine the gauge coupling
g =
√

2m(0)
w /v from the renormalization constraint Eq. (6.50). Then we vary

the ansatz parameters (w, p0, . . . , p3) to lower the fermionic energy E(1)
eff . The

search in Ref. [22] found that the gain in binding energy is insufficient to
compensate for the increase in the effective energy from the vacuum polar-
ization, so that E(1)

eff was always found to be strictly greater than mf . The
same result was obtained in Sect. 6.1 without gauge fields, and the extra
gauge degrees of freedom do not seem to help in the twisted Higgs ansatz.

As an example we consider a linear interpolation (0 ≤ ξ ≤ 1) from the
trivial zero-classical-energy configuration to the twisted Higgs configuration
in Eq. (6.62) with gauge fields set to zero,

Σeiη = 1− ξ + ξ exp
(
−iπe−r/w

)
. (6.64)
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Fig. 6.5 Minimum fermionic effective energies (in units of mf ), with and without
Evac contributions, along the interpolation in Eq. (6.64). The model parameters are
f = 10 and mh = v/

√
2. Figure adopted from Ref. [22]

Figure 6.5 shows E(1)
eff and E

(1)
eff − Evac as functions of ξ, optimizing the

width w at a given value of ξ to minimize the energy. If Evac is omitted, for 0 <
p < 0.6, we have configurations that have fermionic energies lower than the
mass of the perturbative fermion. These configurations indicate the existence
of a local minimum on the E(1)

eff −Evac surface which would be a soliton. The
Evac contribution, however, raises the energies of the configurations to above
mf , and the would-be solitons are destabilized.

(d) Paths Over the Sphaleron
The gauge fields introduce another mechanism for strongly binding a

fermion level because there is a zero mode in the background of the sphaleron
[23, 24]. Let C(n) be the class of configurations that asymptotically approach
a pure gauge configuration with winding number n, cf.Eq. (6.51), so that the
sphaleron is on the border between C(n) and C(n+1). The zero mode arises
along an interpolation of the background fields from a configuration in C(n)

to a configuration in C(n+1), because a fermion level leaves the positive con-
tinuum, crosses zero from above, and finally enters the negative continuum.
The lowering of the occupation energy, E(1)

occ, as zero is approached from above
is balanced against the increase of Ecl + Evac, so it is crucial to determine
whether the former can dominate the latter. Such interpolating configurations
are also useful to find quantum corrections to the sphaleron barriers between
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topologically inequivalent vacua. In addition, new barriers in the one-fermion
energy surface may emerge when the perturbative fermion becomes heavier
than the quantum-corrected sphaleron. These last two phenomena affect the
stability of the heavy fermion and in some models may be significant for
baryogenesis.

Exhaustive numerical studies were performed in Ref. [22]. The theory pa-
rameters (g ∼ 10 and g2 ∼ 7) considered represent large deviations from
those of the standard model in order to exaggerate the effects of heavy per-
turbative fermions. Still, these choices ensure that the results do not become
meaningless because of the Landau pole.

In a first numerical study taken from Ref. [22], we consider a linear inter-
polation between winding number zero and one zero-classical-energy config-
urations,

Φ = v(1− ξ)1 + ξvU (1) and Aj = ξ
i

g2
U (1)∂jU

(1)† , (6.65)

with ξ = 0, . . . , 1. In the spherical ansatz, U (1)(x) = g(x) is specified by a
single function, as in Eq. (6.57), e.g.,

f (1)(r) = −2πe−r/w , (6.66)

where w characterizes the width of the configuration. This interpolation also
varies the Chern–Simons number

NCS = − g2
2

8π2
εijk

∫
d3x tr

(
Ai∂jAk −

2
3
igAiAjAk

)
, (6.67)

so that the vacuum polarization energy can be viewed as a function thereof.
Along the interpolation2 0 ≤ NCS ≤ 1/2, the width is varied to minimize
E

(1)
eff , giving an upper bound on the minimum E

(1)
eff as a function of NCS.

For NCS = 1/2, it is an upper bound on the quantum-corrected sphaleron
energy as well, because E(1)

eff = Eeff in the presence of a fermion zero mode
(the occupation energy is then 0).

In a second study, instanton-like configurations have been explored, where
the Euclidean time ξ = x4 ∈ R acts as the interpolation parameter. They
mediate between two topologically inequivalent zero-classical-energy config-
urations:

Aμ = h(r, ξ)
i

g2
Uinst(x, ξ)∂μU

†
inst(x, ξ) ,

Φ = v
√
h(r, ξ)Uinst(x, ξ) , (6.68)

where

2 By charge conjugation this interpolation also covers the regime 1/2 ≤ NCS ≤ 1.
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Uinst(x, ξ) =
ξ + iτ · x√
r2 + ξ2

. (6.69)

Here h is a function of the Euclidean spacetime radius (
√
r2 + ξ2) and goes

from 0 to 1 as this radius goes from 0 to ∞. A Gaußian parameterization

h(r, ξ) = 1− e−(r2+ξ2)/w2
(6.70)

was chosen to have a well-defined scattering problem. This choice deviates
from ’t Hooft’s electroweak instanton [25] since minimization of the classical
energy is not demanded. Indeed, the configurations that minimize E(1)

eff turn
out to be rather different from those that minimize Ecl. Since the technical
computation of the Dirac spectrum requires the Weyl gauge A0 = 0, a gauge
transformation of the form of Eq. (6.57) with

f(r, ξ) =
∫ ξ

−∞
dξ′

2r
r2 + (ξ′)2

h(r, ξ′)− 2π (6.71)

must be applied to this parameterization.
Figure 6.6 shows the minimum effective energies in both the zero-fermion

sector (E(0)
eff ) and the one-fermion sector (E(1)

eff ) as obtained from the pa-
rameterizations, Eqs. (6.65) and (6.66). To highlight the contribution of the
fermion vacuum polarization energy, Evac, the effect of its omission is also
displayed.

At NCS = 0, both E(0)
eff and Ecl are minimized at the trivial zero-classical-

energy configuration, Eq. (6.59) with f (0)(r) = 0. At NCS = 1/2, E(0)
eff is

minimized at the quantum-corrected sphaleron while Ecl is minimized at

0
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EF=0–Evac

Fig. 6.6 Minimum effective energies (in units of mf ) along the linear path in
Eqs. (6.65) and (6.66), in both the zero-fermion and one-fermion sectors (with and
without the Evac contributions)
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the classical sphaleron. Within the variational ansatz, the parameters that
minimize E(0)

eff at NCS = 1/2 are different from those that minimize Ecl. As
a result, the fermion vacuum polarization energy correction to the sphaleron
turns out to be rather large. While the classical sphaleron has an energy of
0.45mf ,3 the quantum-corrected sphaleron has an energy of 1.02mf .

Since the classical sphaleron has an energy much smaller than the pertur-
bative fermion mass, one would expect that the perturbative fermion would
have an unsuppressed decay mode over the sphaleron, as first pointed out
by Rubakov [26]. The E(1)

eff − Evac curve indeed displays this decay path.
The fermion vacuum polarization energy modifies this picture in two cru-
cial ways. First, the fermion quantum corrections to the sphaleron raise its
energy to be roughly degenerate with the fermion, so the threshold mass is
significantly increased. Second, the plot of E(1)

eff shows that there is an en-
ergy barrier between the fundamental fermion and the quantum-corrected
sphaleron. So, even when the fermion becomes heavier than the sphaleron,
there might exist a range of masses for which the decay continues to be
exponentially suppressed (since it can only proceed via tunneling).

Figure 6.7 shows the minimized effective energy in the one-fermion sector
as a function ofNCS for the interpolations we have discussed and two different
values of the gauge coupling g2.

The two seemingly different interpolating configurations studied above
produce very similar minimum E

(1)
eff curves. Furthermore, extensions of the

variational ansätze did not reduce the energies by any significant amount [22].
Hence the plotted curves may be close to the true minimum E

(1)
eff curve. This
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Fig. 6.7 Minimum E
(1)
eff (in units of mf ) for paths from a zero-classical-energy

configuration to the sphaleron. Curves denoted “Lin.” refer to the linear path in
Eqs. (6.65) and (6.66) while those labeled “Inst.” are associated with the instanton
path, Eqs. (6.68), (6.69), and (6.70)

3 The small deviation from the (exact) numerical estimate of 0.42mf [15] for the
same theory parameters arises from the restricted variational space.
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is the justification for considering only the linear interpolation in Fig. 6.6 and
taking the evidence for the emergence of a new barrier and the significant
energy change of the sphaleron seriously.

As the gauge coupling increases, the energy of the quantum-corrected
sphaleron is decreased and the barrier between the fundamental fermion and
the sphaleron does not persist indefinitely. As shown in Ref. [22], for g2 = 10,
when mf is approximately 1.3 times the quantum-corrected sphaleron, there
is no barrier and the decay mode is unsuppressed.

Just as in the case of the twisted Higgs variational ansatz, no configuration
was found for which the associated fermion energy was lower than the sum
of the perturbative fermion and the quantum-corrected sphaleron. Thus, no
evidence could be found for the existence of fermionic solitons in the low-
energy spectrum of the standard model.

6.2.4 Beyond the Spherical Ansatz

In hindsight it is not too surprising that no quantum soliton appears within
the spherical ansatz. As mentioned in Sect. 6.2.2, the existence of such solitons
would maintain anomaly cancellation when fermions are decoupled. Without
the hypercharge gauge field, the only anomaly is Witten’s global anomaly [27]
due to topologically non-trivial maps S4 �→ SU(2). However, in the spherical
ansatz, the theory reduces to a U(1) theory in which Π3(SU(2)) persists as
Π1(U(1)) but there is no remnant of Π4(SU(2)). So the quantum soliton that
could resolve the decoupling puzzle probably lies outside this ansatz.

One route beyond the spherical ansatz is the use of non-trivial Π4(SU(2))
mappings to construct non-contractible loops and corresponding classical
sphalerons, cf. Sect. 6.2.1. Because the sphaleron backgrounds have exact
fermion zero modes, neighboring configurations along these paths will have
tightly bound fermion levels. Moreover, since the non-trivial topology that
gives rise to Witten’s anomaly is built into the construction of such config-
urations, they are promising candidates for objects that maintain anomaly
cancellation in the decoupled theory. As shown in Ref. [28], electroweak string
solutions are closely related to non-perturbative anomalies and thus repre-
sent particularly attractive possibilities for this approach. In this scenario, a
classically unstable electroweak string could be stabilized quantum mechan-
ically by carrying fermion number. We will investigate these configurations
more thoroughly in Chap. 8.
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7 Boundary Conditions and Casimir Forces

As an important application of the spectral method we study the Casimir
effect. The Casimir effect and the corresponding force were originally discov-
ered in 1947 by Casimir and Polder in their study of the relativistic van der
Waals force between neutral atoms [1]. In the same year, Casimir showed
that the tiny force between grounded conducting plates could be understood
as a modification of the vacuum fluctuations of the electromagnetic field due
to conducting boundary conditions on the plates [2]. There has been renewed
interest in the Casimir force from applied physics because of its importance
at nanometer scales and, in particular, in micro-mechanical devices. For a
comprehensive overview, see Ref. [3].

Modeling conductors with boundary conditions is a mathematical ideal-
ization that does not always capture the underlying physics. This idealization
emerges as the strong coupling limit of the physical interactions between the
quantum field and material bodies. It is only appropriate in a situation where
the important interactions between the material and the vacuum fluctuations
are well approximated by the strong coupling limit. For the electromagnetic
Casimir interaction between rigid bodies those modes are the photons with
wavelengths comparable to the distance between the bodies [4]. Then the
boundary condition approach predicts [2]

F = − �cπ2

240(2a)4
(7.1)

for the Casimir force per unit area between two parallel conducting plates that
are separated by 2a. This prediction has by now been verified experimentally
with precision of about 1% [5–7]. Though the photon–material interaction
is governed by QED, its coupling constant, the elementary charge e, does
not appear in Eq. (7.1) because this equation represents the limit e → ∞.
If e were zero, the force would be zero as well. Since no real material can
constrain modes of the quantum field with wavelengths much smaller than
the typical length scale of the inter-atomic interactions there is thus a natural
cutoff above which the interactions become negligible. A good example is the
plasma frequency in a realistic metal [8, 9].

There is another obstacle. Since the idealized boundary conditions con-
strain the fluctuation modes of any wavelength, they affect the high-energy
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129–142 (2009)
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modes from quantum loops. As we argued in Chaps. 2 and 3, the latter must
be regularized and renormalized. As a result, in the boundary condition ap-
proach the handling of divergences may significantly affect the result. Using
ad hoc surface counterterms [10] or special computational methods [11, 12]
to discard infinities may suppress a physical cutoff dependence, not a mere
calculation artifact; it can even lead to inconsistent and contradictory results,
as we will discuss in Sect. 7.2.

We will see that the interaction of the high-energy modes with the bound-
ary induces additional divergences that cannot be fully removed by the stan-
dard counterterms of quantum field theory [13]. This result can be most
elegantly deduced by formulating the Casimir problem so that the fluctu-
ating quantum field interacts with a smooth background field, which in a
certain singular limit induces the boundary conditions [14, 15]. This pro-
cedure corresponds to the strong coupling limit mentioned above. Before
taking this limit, only physically unobservable divergences occur, which are
absorbed in the model parameters in a controlled manner through renormal-
ization. When the singular limit is approached, any remaining divergence
indicates that the physical answer will depend on the details of the material
interactions.

In this chapter, we will employ the spectral method to discuss the simplest
case, viz. a scalar background field that implements Dirichlet boundary con-
ditions for a neutral spinless boson field in the singular boundary condition
limit. We will study both the renormalized total energy and the energy den-
sity in various space dimensions. In the boundary condition limit the Casimir
energy density is finite, but it diverges as the boundary is approached. This
divergence is so severe that its spatial integral, i.e.,the total energy, ceases
to exist. Fortunately, that is not the end of the story, because in most cases
we are not interested in the total energy. Rather we would like to know the
change in energy when we move objects relative to each other, which deter-
mines the forces that objects exert on each other. These forces stay finite
as long as we do not modify the shape of the objects. Both the force be-
tween rigid bodies and the energy density away from the boundary surfaces
fall into this class, which explains why Eq. (7.1) is a trustworthy result. By
contrast, observables such as the Casimir stress on a single surface, which is
the response to an infinitesimal change of the surface geometry, cannot be
described in an idealized manner by boundary conditions. They will depend
in detail on the physics of the surface material and its interaction with the
quantum field.

These findings agree with the work of Candelas and Deutsch [16]. They
point out that the vacuum polarization energy density diverges as one ap-
proaches a boundary, and further conclude that the divergences are not the
ones that can be canceled by standard counterterms. The famous special cases
where the divergences happen to cancel—the conformal scalar field near a
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planar boundary [17] and the electromagnetic field near a sphere [18]—are
indeed exceptional. These cancellations fail and the Casimir energy diverges
when the same calculation is repeated with a tiny shape imperfection in the
boundary. This result clearly casts doubts on the traditional way of perform-
ing these calculations. Similar subtleties were addressed in the context of
dispersive media in Ref. [19].

The results derived in this chapter refer to the simple case of Dirich-
let boundary conditions for a spinless boson field, but it is expected that
they generalize to more realistic situations. The electromagnetic interaction
with conducting boundary conditions are, of course, physically more inter-
esting, since they are directly related to experiment and nano-technology ap-
plications. Spectral techniques for the calculation of electromagnetic Casimir
forces have been developed recently [20, 21].

7.1 Dirichlet Conditions from Quantum Field Theory

We consider a renormalizable interaction of the fluctuation field φ with a
static scalar background field σ(x),

L =
1
2
∂μφ∂

μφ− m2

2
φ2 − λ

2
φ2 σ(x) + Lct[σ] . (7.2)

Dirichlet boundary conditions are implemented by a twofold limiting scenario:
(i) the sharp limit in which the spatial extension Δ of σ(x) approaches zero
and (ii) the strong limit in which the coupling λ tends to infinity. The sharp
limit, Δ→ 0, indicates that σ(x) becomes a surface δ-function with support
on the given surface S . This surface characterizes the body for which we want
to compute the Casimir energy. However, this sharp limit is not sufficient to
enforce the Dirichlet boundary condition on S for all quantum modes φ
until we combine it with the strong limit, λ → ∞. Both parameters Δ and
λ represent physical cutoffs that characterize the (idealized) material with
which the fluctuating field interacts. We may consider Δ as the physical
thickness of the surface, while λ plays a role similar to the plasma frequency:
Modes with frequency much larger than the scale set by λ are not constrained
at the boundary S .

A typical Casimir calculation thus involves a strongly peaked back-
ground and a large coupling strength. These conditions make it impossible
to use the gradient expansion or perturbation theory as calculational tools
without summing all orders [22, 23]. Since the spectral method does ex-
actly that, cf.Sect. 3.5, the Casimir problem is indeed an ideal application
thereof.

The basic question is whether the Casimir force exists in the boundary
condition limit (Δ → 0 and λ → ∞) without specifying any other feature
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of σ(x). In particular, the action for σ need not be specified except for the
counterterms Lct induced by the interactions with φ. The renormalization
conditions are independent of the particular choice of background field σ(x)
so that results for different geometries can be directly compared. For the
simple model Eq. (7.2), the only counterterms required are Lct = c1σ(x)
for one or two spatial dimensions and Lct = c1σ(x) + c2σ(x)2 for three.
These two terms renormalize the tadpole and vacuum polarization graphs,
respectively.

7.2 Rigid Bodies: Dirichlet Points and Parallel Plates

As a first illustrative example we consider the force between isolated Dirichlet
points in one spatial dimension. As we have already discussed, the scattering
problem in one space dimension differs from the general case described in
Chap. 2. We write the Green’s function at coincident points for imaginary
momentum as

G(x, x, it) =
g(it, x)h+(it, x)
tg(it, 0)− g′(it, 0)

+
h−(it, x)g(it, x)

g(it, 0)
. (7.3)

This expression differs from Eq. (2.17) because (i) the boundary condition for
h+(it, x) is such that the derivative of the wavefunction in Eq. (2.15) vanishes
at x = 0, rather than the wavefunction itself, and (ii) the two channels
have identical differential equations, hence g(it, x) is the same for both. The
corresponding Jost functions are obtained from this single function and its
spatial derivative at x = 0,

F+(it) = g(it, 0)− 1
t
g′(it, 0) and F−(it) = g(it, 0) . (7.4)

The sharp limit is benign in one space dimension and we can directly start
from the background configurations

σ1(x) = δ(x) , σ2(x) = δ(x− a) + δ(x+ a) (7.5)

for a single Dirichlet point at x = 0, or two Dirichlet points separated by
the distance 2a, respectively. For the background σ2 we find the radial func-
tions [24]

g(it, x) =
{

1
1 + λ

2t

[
1− e2t(x−a)

]
,

h+(it, x) =
1
2

{
1 + e−2tx + λ

2t

[
1 + e−2ta − e−2tx − e−2t(x−a)

]
,

1 + e−2tx
(7.6)

h−(it, x) =
1
2t

{
1− e−2tx + λ

2t

[
1− e−2ta + e−2tx − e−2t(x−a)

]
1− e−2tx

,
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where the upper and lower cases correspond to x > a and 0 ≤ x < a,
respectively. The region x < 0 is obtained by reflection. These functions
are found without difficulty by noting that for |x| �= a the Jost solution
f(it, x) = g(it, x) e−tx and the physical scattering solutions φ±(it, x) =
h±(it, x) etx solve free Schrödinger equations for complex momenta and that
the δ-functions in the potential merely induce cusps at x = ±a. The ra-
dial functions for the background σ1 are easily obtained from Eq. (7.6) by
setting a = 0 and replacing λ → λ/2. Then only the symmetric channel is
affected, because the antisymmetric wavefunction vanishes at the location of
the δ-function.

The energy density is obtained from a momentum integral involving the
resulting local spectral density1

[ρ(it, x)]0 =
λ

λ2 − (2t+ λ)2e4ta

⎧⎨
⎩
[
2t− λ+ (2t+ λ)e4ta

]
e2t(a−|x|)

2
[
(2t+ λ)e2ta cosh(2tx)− λ

]
,

(7.7)

as in Eqs. (3.19) and (3.22). Since it vanishes exponentially at large t, it will
yield a finite energy density for |x| �= a. According to Eq. (3.26), we find the
total energy by integrating the logarithm of the Jost functions. To this end
we substitute the expressions for g(it, 0) into Eq. (7.4) and obtain

E2(a, λ) =
∫ ∞

m

dt

2π
1√

t2 −m2

{
t ln
[
1 +

λ

t
+
λ2

4t2
(
1− e−4ta

)]
− λ
}
. (7.8)

The last term in curly brackets is the N = 1 Born subtraction. Carrying out
a similar calculation for a single δ-function background σ1 yields

E1(λ) =
∫ ∞

m

dt

2π
t ln
[
1 + λ

2t

]
− λ

2√
t2 −m2

. (7.9)

From the above equations we immediately verify that E1 and E2 obey the
consistency conditions lim

a→∞E2(a, λ) = 2E1(λ) and lim
a→0

E2(a, λ) = E1(2λ).
In the limit of large λ the total energy associated with a single δ-function

approaches minus infinity as −λ lnλ [24], which cannot be canceled by any
available counterterm. Thus the energy is infinite in this limit. We must
conclude that the Dirichlet–Casimir energy is not well defined in the context
of renormalizable quantum field theory. However, we can compute the force
between two δ-functions for finite λ and subsequently take the λ→∞ limit,

F (a) = − lim
λ→∞

∂E2(a, λ)
∂(2a)

= −
∫ ∞

m

dt

π

t2√
t2 −m2 (e4ta − 1)

, (7.10)

1 A factor 1/2 is included here because we now define the energy density with
respect to x ∈ [−∞,∞] rather than x ∈ [0,∞] as in Eqs. (3.22) and (3.23).
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which is equal to the result found using boundary conditions [3, 11]. The
massless limit does not exist for the vacuum polarization energy in Eq. (7.9),
even for finite λ. This is to be expected since massless scalar field theories are
infrared divergent in 1 + 1 dimensions [25]. However, it exists for the force,
yielding the well-known result

lim
m→0

F (a) = − π

96a2
. (7.11)

These limits support our earlier statement that Casimir forces between rigid
bodies can be reliably computed in the boundary condition framework.

Let us compare these results with those from the boundary condition
calculation. As already noted, away from the boundary the energy density
is finite even without Born subtraction or renormalization. This comes as
no surprise: Since the counterterms are local monomials in the background
field σ(x), they are generally concentrated directly on the Dirichlet surfaces
and no renormalization is necessary for the density away from the surfaces.
Furthermore, the strong coupling limit λ→∞ can also be performed, giving
the same result as if we had assumed the Dirichlet boundary conditions from
the start. For instance, we find from Eq. (7.7) [24], cf.Eq. (3.22)

ε2(x, a) = − 1
2π

⎧⎪⎨
⎪⎩
m2K0(2m(|x| − a)) |x| > a

2
∫ ∞

m

dt√
t2 −m2

t2 −m2 +m2e2ta cosh(2tx)
e4at − 1

|x| < a .

(7.12)

The analogous result for a single Dirichlet point, ε1(x) = m2

2π K0(2m|x|), is
obtained from a → 0. This agrees with the exact energy density obtained
from Eq. (7.7) as long as |x| �= a. At these points the exact density diverges
even for finite λ. In a boundary condition calculation, however, we would
integrate Eq. (7.12) to obtain the total energy [3, 11]

Ẽ2(a) = −m
2
− 2a

∫ ∞

m

dt

π

√
t2 −m2

e4at − 1
, (7.13)

where the tilde indicates the omission of divergent contributions from the
Dirichlet points. This omission does not cause a problem in calculating the
attractive force between the two Dirichlet points,

F̃ (a) ≡ −d Ẽ2(a)
d(2a)

= −
∫ ∞

m

dt

π

t2√
t2 −m2 (e4at − 1)

, (7.14)

which reduces to the standard results

Ẽ2(a) = − π

48a
and F̃ (a) = − π

96a2
(7.15)

in the massless limit. The corresponding limit for the single Dirichlet point
yields Ẽ1 = 0. While F (a) = F̃ (a), the energies Ẽi differ from those computed
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previously in the field theory framework. In particular, they do not satisfy
the consistency conditions discussed after Eq. (7.9).

These inconsistencies of the boundary condition approach may seem to be
a mere nuisance. This is not so: As we will see below, there are cases in which
the same inconsistencies lead to false conclusions about physically measurable
quantities! The field theory approach is not afflicted by such problems: For
any finite coupling λ, we can compute the energy density for all positions x,
including the points on the boundaries. Even after including the contributions
from the counterterms, the energy density on Dirichlet boundaries may not be
finite in the boundary condition limit. It is, in general, not even integrable,
and this singularity is precisely the reason for the failure of the boundary
condition approach. The contribution to the energy density of the Dirichlet
boundaries cannot be excluded without introducing internal inconsistencies.2

It should finally be noted that the Jost functions for the Dirichlet points,
Eq. (7.4), can also be used to compute the energy per unit area, E , for two
Dirichlet plates in three space dimensions. This is a typical application of
the interface formula derived in Sect. 3.7. Here we require the energy per
unit area for one non-trivial and two trivial dimensions. When evaluating the
integral Eq. (3.89) for E = E2,1 in the complex momentum plane, we pick up
a contribution from the cut in

√
k2 +m2

3
. Formally we find

E =
1

4π2

∫ ∞

m

dt t
√
t2 −m2

∑
�=±

[ν�(t)]2 +
[
E

(2)
FD + Ect

]
. (7.16)

The sharp limit corresponds to ν±(t) = lnF±(it) = ln
[
1 + λ(1± e−2at)/2t

]
.

In that limit Eq. (7.16) diverges even for finite couplings λ. However, the
divergence is independent of the distance 2a between the plates. Thus the
physically measurable pressure on the plates, P(a) = −dE /d(2a), is finite in
the sharp limit. The subsequent strong coupling limit λ → ∞ indeed yields
a finite pressure

P(a) = −C(2ma)
(2a)4

with C(x) ≡ 1
2π2

∫ ∞

x

dτ
τ2
√
τ2 − x2

e2τ − 1
. (7.17)

In the massless case, m→ 0, the standard result is recovered [3, 11, 12],

P(a) = − π2

480 (2a)4
, (7.18)

which also follows from the boundary condition calculation.
2 Ad hoc counterterms introduced to cancel the extra divergences in the Dirichlet

limit pose a different problem: The comparison of various background configu-
rations is only reliable if the same counterterms and renormalization conditions
are used for all σ. In particular, the Casimir energy will then diverge for any
smooth background, since the extra ad hoc counterterms are not balanced by
any infinite diagrams.
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A brief side comment on this result is in order. The quartic behavior
P(a) ∼ a−4 for a massless quantum field is in fact generic for three space
dimensions: For m → 0 and all other coupling constants going to infinity in
the Dirichlet limit, the final answer can only depend on a (and � = c = 1).
Simple dimensional analysis implies P(a) ∼ a−4, as confirmed by Casimir’s
initial calculation in the electromagnetic case. Even though the prefactors
in typical Casimir formulae are minuscule (in physical units) and the mea-
sured forces are in the range of 10−9N and below, the a−4 behavior would
eventually dominate all long-ranged (electrostatic) forces—up to distances of
a ∼ 10−10m, where the atomic nature of the materials is resolved and the
macroscopic picture of potential scattering is invalid. This simple dimensional
analysis reveals why Casimir forces are of particular importance to devices
at the nanometer scale.

7.3 The Casimir Stress on a Dirichlet Ring

For the Dirichlet points, the inconsistencies of the traditional boundary condi-
tion approach had no immediate consequences on observable quantities such
as the force. For physically measurable observables that directly probe the
energy density on the boundaries, however, the traditional approach leads to
incorrect conclusions. A typical example is the Casimir stress on an isolated
Dirichlet surface S . It is defined as the response of the quantum field to
an infinitesimal change in the geometry of S . While the force between rigid
bodies requires moving the surfaces S relative to each other but keeping
the shape of S fixed, the stress compares situations in which the geometry
of S has actually changed. The strong interactions on S will thus cause
the stress to diverge. Of course, this divergence is not physical; it simply
means that the stress will depend on the material cutoffs defining the real
interactions. As a result no idealized Casimir formula can be derived for
self-stresses.

This line of reasoning casts doubts on the well-known calculation of the
Casimir stress on a grounded sphere [18]. While it may be true that the in-
finities of the energy density cancel between the inside and the outside in
a principle value prescription, this cancellation must be considered acciden-
tal: Even the slightest imperfection of the sphere’s geometry will cause the
cancellation to fail and the stress will become cutoff dependent. Thus the
boundary condition approach with the principal value prescription must be
regarded as a mathematical oddity rather than a real physical description.
By contrast, the field theory approach predicts a cutoff-dependent stress for
all shape geometries, with no special role attributed to the perfectly round
sphere.
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To corroborate these statements, we consider the simple example of the
Casimir stress on a Dirichlet ring in two spatial dimensions.3 In the sharp
limit the total energy is divergent when the number of spatial dimensions is
larger than one, so we generalize to a Gaußian background profile of width
Δ, concentrated on a ring of radius a,

σ(r) = A exp
(
− (r − a)2

2Δ2

)
. (7.19)

The normalization A is chosen such that σ(r) → δ(r − a) as Δ → 0. As in
the case of one spatial dimension, the energy density can be studied in this
sharp limit as long as r �= a. The local spectral density ρ(it, r), cf.Eq. (3.17),
vanishes exponentially for large t, so that both the t-integral and the sum over
channels in Eq. (3.22) are uniformly convergent. The subsequent strong limit
λ→∞ can be taken under the sum and the integral, giving the same energy
density ε̃(r, a) as the traditional calculation, where the boundary condition
φ(a) = 0 is assumed from the start. Again, no renormalization is necessary
for the density away from the boundaries, since the counterterms are local in
the background σ(r).

The boundary condition approach adopts ε̃(r, a) as the full answer and
omits the contributions from the ring at r = a. To see whether this is legit-
imate, we proceed along the lines of Sect. 2.2 and solve numerically for the
relevant scattering functions g�(k, r) and h�(k, r) entering the Green’s func-
tion for Δ > 0. The only subtlety is in the s-wave channel, where a sublead-
ing logarithmic piece in the free Jost solution requires a somewhat modified
boundary condition on h0(k, r), as described in Ref. [24]. Since σ(r) �= 0 for
any r, the first Born approximation must now be subtracted to ensure the
convergence of the t-integral in Eq. (3.22), for all radii. The corresponding
first-order diagram is local, and in the no-tadpole scheme this counterterm
cancels the first-order diagram completely. This N = 1 Born subtraction in
Eq. (3.22) suffices to give a finite energy and energy density for any fixed
λ <∞ and Δ > 0.

Figure 7.1 displays the dependence of the energy density on the width Δ
of the Gaußian background field for various values of r. The limit Δ → 0
is non-uniform. In particular, the energy density approaches a finite limit at
any fixed r as Δ → 0, but the limiting function itself diverges as r → a.
Sufficiently far away from the location of the ring, say around |r − a| ≥ 3Δ,
the energy density quickly approaches the limiting form corresponding to the
result for the δ-function background. As r → a, the convergence to the sharp
limit gets worse, and no such limiting value exists at r = a. In fact, the
divergence at r = a is non-integrable, so that the total Casimir energy does
not exist for any sharp background. Since the strong limit λ→∞ worsens this
divergence, no idealized Casimir energy, as would be found using a boundary
condition calculation, exists for a Dirichlet ring.
3 This restriction is mainly to simplify the renormalization.
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Fig. 7.1 The energy density in units of m2 for the Gaußian ring located at a =
1.0/m with coupling strength λ = 3.0 m for various values of the width Δ. The left
panel shows the energy density for all radii. The right panel focuses on the region
where the densities can be seen to converge toward the sharp limit

This fact can also be clearly seen from Fig. 7.2, where we display the
contributions, E�, from the orbital angular momentum channel � to the total
Casimir energy E =

∑
�E�. For any finite width Δ, the E� decrease steeply

enough as a function of � to yield a convergent sum. However, this asymptotic
regime commences at a value that increases as Δ decreases. This reflects the
non-uniform behavior that for any fixed width, there always is a channel �0
large enough such that the energies E� decay as 1/�2 for � ≥ �0. On the
other hand, for every fixed channel �, we always find a width Δ small enough
such that we are far from the asymptotic region. Eventually, as Δ → 0, the
asymptotic region is never reached and the total energy diverges.
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Fig. 7.2 Contributions E� to the total quantum energy of a Gaußian ring from
various angular momentum channels. The left panel corresponds to the parameters
a = 1.0/m, Δ = 0.1/m, and λ = 3 m. The decay with � is consistent with the
asymptotic form E� ∼ 1/�2 for all � ≥ 5. In the right panel, the width is decreased
to Δ = 0.008/m; for the asymptotic decay to be valid, we require � ≥ 50
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7.4 Oversubtraction and Diagrammatic Analysis

The divergence of the boundary condition limit can be studied in precise
detail by the oversubtraction technique, cf.Sect. 2.4. Only a small number
of low-order renormalized Feynman diagrams diverge as Δ→ 0 [13]. We ex-
tract these diagrams by subtracting more Born approximations than required
by renormalization. We must compensate for this oversubtraction by adding
back the equivalent Feynman diagrams. That is, in Eq. (3.26) we choose N
larger than required by the superficial divergence. For the Dirichlet ring in
two spatial dimensions only the tadpole graph is ultraviolet divergent and
N = 1 is the minimal number of Born subtractions. If we take N = 2 in-
stead, the sharp limit Δ → 0 can be taken for the phase shift part of the
calculation. The non-existence of the sharp limit must therefore be attributed
solely to the N = 2 Feynman diagram. This reasoning generalizes: For any
number of dimensions, we can take the sharp limit Δ → 0 for the phase
shift part, if enough Born subtractions are applied. The non-existence of the
Casimir energy as Δ → 0 must therefore be rooted in low-order Feynman
diagrams.4

For the Dirichlet ring, the relevant N = 2 diagram

E
(2)
FD

Δ→0→ −λ
2a2

8
lim

Λ→∞

∫ Λ

0

dp J2
0 (ap) arctan

p

2m
(7.20)

diverges logarithmically. The divergence originates in the high momentum
components of the Fourier transformation of σ(r) → δ(r − a), i.e.,in the
external rather than the loop momentum. If we included a local counterterm
to cancel this divergence, this counterterm would produce infinities for any
smooth background, such as the Gaußian ring with Δ > 0. Therefore, the
extra divergence must instead be regulated by having finite values for the
material parameters Δ and λ that characterize the interaction. Because the
contribution Eq. (7.20) varies with the radius a of the circle, it gives an infinite
contribution to the stress dE/da. Thus, unlike the force between rigid bodies,
the Casimir stress on isolated surfaces receives a contribution with a cutoff
dependence that cannot be consistently removed.

We will next use the oversubtraction technique to analyze the case of
three spatial dimensions more thoroughly [15]. As expected from dimensional
analysis, the first two diagrams are ultraviolet divergent for Δ > 0. Since the
second-order diagram is not local, it cannot be canceled completely by the
counterterm Lct = c2 σ(x)2. A conventional renormalization condition is to
require that the vacuum polarization vanishes at an arbitrary renormalization
scale μ. The result is

4 The subsequent strong coupling limit, however, involves all orders in λ. For
instance, the (λ ln λ) divergence of the Casimir energy for Dirichlet points cannot
be attributed to any finite set of Feynman diagrams.
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E(2)[σ] =
λ2

64π2

∫
d3p

(2π)3
σ̃(p)σ̃(−p)

∫ 1

0

dx ln
m2 + x(1− x)p2

m2 + x(1− x)μ2
, (7.21)

where σ̃(p) denotes the Fourier transform of the background profile. Other
renormalization conditions differ only by a finite renormalization, which can
be absorbed in the definition of μ. We first consider plate-type geometries:

• a single plate of thickness Δ:

σ|(z) = Δ−1 [Θ(z +Δ/2)−Θ(z −Δ/2)];
• two plates of thickness Δ, separated by a distance 2a:

σ‖(z) = Δ−1 [Θ(|z| − a+Δ/2)−Θ(|z| − a−Δ/2)]

as representatives for rigid bodies and postpone the sphere geometry to the
next section. The normalization is such that

∫∞
−∞ dzσ(z) counts the numbers

of plates. Then the coupling constant λ has unit mass dimension. Alternative
normalizations are, of course, possible and they may have an impact on the
mass dimension and scaling of various parameters. We will return to this
issue in Sect. 7.5.

Upon Fourier transforming these profiles and substituting them into
Eq. (7.21), the sharp limit Δ → 0 can be studied in detail. The calcula-
tion [15] is lengthy and we will focus on the central result, which can be
neatly presented in the simplified case of massless quantum fluctuations. We
find the renormalized second-order diagram to be

E(2)[σ|, σ‖] = − λ2

32π2

A

Δ
[ln(μΔ) + γ − 1] + · · · , (7.22)

where γ is Euler’s constant and the ellipsis refers to contributions that remain
finite in the sharp limit. The proportionality to the area A of the Dirichlet
surface indicates that the divergence indeed stems from the infinite energy
density on the surfaces. As long as we are only interested in those forces
that do not require this area to be changed—or more generally, the material
bodies to be deformed—we need not be troubled by the cutoff dependence in
the energy.

7.5 The Dirichlet Sphere

Similarly to the above analysis we consider a spherical shell of thickness Δ
and radius R,

σ◦(r) = Δ−1 [Θ(r −R)−Θ(r −R−Δ)] . (7.23)

We have normalized this background
∫
dr σ◦(r) = 1 so that the dimension-

ality of the coupling constant, λ, is the same as for the plate configuration.
We then find the second-order contribution
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E(2)[σ◦] = −λ
2R2

8π2

(
1
Δ

[ln (μΔ) + γ − 1]− ln (μΔ)
R

)
+ · · · . (7.24)

If the surface size or geometry has to be varied, as is the case for the stress
P = −∂E[σ◦]/∂R, the sharp limit gives a divergent (or cutoff-dependent)
result. Since A (σ◦) = 4πR2, Eqs. (7.24) and (7.22) are formally identical up
to the subleading divergence proportional to ln(Δ). This suggests a surface-
type divergence for the sphere as well. However, this identification only holds
for the particular normalization of the background potential. If instead we
chose to normalize to the entire spatial volume,

∫
d3x σ̃◦(x) = 1, i.e.,

σ̃◦(r) = 3/(4π((R+Δ)3 −R3)) [Θ(r −R)−Θ(r −R−Δ)] , (7.25)

the prefactor of the energy in Eq. (7.22) changes:

E(2)[σ̃◦] = − λ̃2

128π3R2

(
1
Δ

[ln (μΔ) + γ − 1]− ln (μΔ)
R

)
+ · · · . (7.26)

We have introduced a modified coupling constant λ̃ because the dimension-
ality of the background has changed as σ◦ → σ̃◦. However, this modifica-
tion does not involve the geometrical quantities R or Δ, since renormaliza-
tion determines λ̃ independently from the background. Obviously, the new
second-order energy, Eq. (7.26), also gives an infinite contribution to the
stress. The reader might be tempted to eliminate the R-dependence from
the divergences altogether by searching a suitable normalization of σo(r) and
redefining R → R + Δ/2. Such a transformation is indeed possible, but it
does not solve the problem: As shown in Fig. 7.3 for the case of massive
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Fig. 7.3 The contribution of the third-order Feynman diagram to the energy of
a spherical Dirichlet shell of radius R and thickness Δ, plotted as a function of
ε = Δ/R. All dimensionful quantities are measured in units of the mass m of the
fluctuating field. For the energy on the ordinate, a scale was chosen which highlights
the R-dependence as well as the logarithmic divergence with Δ
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quantum fluctuations, the third-order diagram in the sphere geometry (com-
puted with the normalization of Eq. (7.23)) diverges as well in the sharp
limit Δ → 0. The explicit formulae are somewhat involved in this case [15],
but the numerical evidence from Fig. 7.3 and integral estimates for the com-
plete formula indicate that E(3)[σ◦]→ const · lnΔ+ · · ·. Since the third-order
diagram has three insertions of σ̃◦, no normalization for σ◦(r) can be found
that eliminates the R-dependence from the infinite pieces in both the second-
and third-order diagram simultaneously. The stress on a Dirichlet sphere in
three spatial dimensions is thus infinite (or material cutoff dependent) in the
sharp limit. The subsequent strong coupling limit λ → ∞ will only worsen
the divergence.
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8 String-Type Configurations

An important class of non-trivial field configurations in gauge field theories
are extended tubes of magnetic flux, also called vortices. In the first section
of this chapter we will be concerned with the coupling of electromagnetic flux
tubes to fluctuating fermions. We then extend this analysis to non-abelian
gauge fields to study electroweak strings in the standard model of particle
physics.

We will consider models in both d = 2 + 1 and d = 3 + 1 dimensions.
In d = 2 + 1 the strings appear as ordinary soliton solutions to the classical
equations of motion, with localized energy density in the xy-plane. The same
configurations in d = 3 + 1 extend homogeneously along the z-direction, i.e.,
the region where the energy density is concentrated takes the form of a tube.
Such field configurations are commonly called cosmic strings to distinguish
them from the fundamental objects in string theory. We will use the term
strings or vortices, even for objects that are ordinary solitons in d = 2 + 1.

8.1 Flux Tubes in Quantum Electrodynamics

We consider continuum quantum electrodynamics, an abelian gauge theory
that allows for vortices carrying arbitrary magnetic flux. In such a theory the
phase of the fermion wavefunction cannot be unique. A beautiful manifesta-
tion of this phase ambiguity is the Aharonov–Bohm effect [1], with important
consequences for fermion scattering in general [2]. Parity anomalies [3], con-
densate formation [4], and exotic quantum numbers [5–7] are also closely tied
to the non-perturbative vortex topology.

A reliable description of such phenomena is only possible with an accu-
rate understanding of the quantum effects induced by the vortex background.
To one-loop order, these are just the small-amplitude electron fluctuations.
Proper renormalization is essential in this scenario in order to ensure that the
masses, couplings, and states correspond to experimental (or conventional)
values. We will apply our spectral methods to this problem, with a particular
focus on the subtleties introduced by the non-trivial topology of the vortex
and the reliability of the derivative expansion. We will use the interface for-
malism of Sect. 3.7.1 to extend from vortices in d = 2 + 1 dimensions to

Graham, N., et al.: String-Type Configurations. Lect. Notes Phys. 777, 143–169 (2009)

DOI 10.1007/978-3-642-00139-0 8 c© Springer-Verlag Berlin Heidelberg 2009
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strings in d = 3 + 1 dimensions, and show that these cases yield consistent
and comparable results. Our calculation [8] builds on previous work including
that of Refs. [9–11].

8.1.1 The Vortex Configuration

We consider a gauge field, Aμ, and a four-component1 Dirac fermion ψ,

L = −1
4
FμνF

μν + ψ̄ (i∂/+ eA/−m)ψ + Lct . (8.1)

As usual, m and e are the mass and charge of the fermion, respectively, and
Fμν ≡ ∂μAν−∂νAμ. Vortices are localized, cylindrically symmetric magnetic
fields (pointing in the z-direction in d = 3 + 1), with a net flux Φ through
the xy-plane. In radiation gauge the corresponding background field reads

A0 = 0 , A =
Φ

2πr
f(r)eϕ , (8.2)

where r =
√
x2 + y2 measures the planar distance from the center of the

vortex and ϕ is the corresponding azimuthal angle. In d = 2 + 1 dimensions
Eq. (8.2) generates a pseudoscalar magnetic field of the form

B(r) =
Φ

2πr
df(r)
dr

, (8.3)

while d = 3+1 has the same field pointing in the z-direction,2 B(r) = B(r)ez.
The profile function f(r) goes to unity at large distances, and regularity at
r = 0 requires that f(r) = O(r2) near the origin. It is convenient to measure
the flux in units of 2π/e and define the dimensionless quantity,

F =
e

2π
Φ . (8.4)

For the numerical investigations we adopt a Gaußian profile of width w,

f(r) = 1− e−r2/w2
whence B(r) = B(0) e−r2/w2

, (8.5)

so that Φ = πw2B(0) or F = ew2B(0)/2.

8.1.2 The Quantum Energy of the Vortex

In d = 3+1, the vortex is an interface with a trivial dimension along the vortex
core. Thus the relevant quantities are the quantum energy in d = 2 + 1 and
1 The d = 2 + 1 case describes a parity-invariant electromagnetism with two de-

generate Weyl spinors of equal mass m and charge e.
2 Notice that Φ, e, Aμ, and thus the magnetic field B(r) have different mass di-

mensions in d = 2 + 1 and d = 3 + 1.
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the quantum energy per unit length in d = 3 + 1. We will use the expression
quantum energy in both cases and denote it by E. Since photons do not carry
charge, their quantum fluctuations start contributing to E at two-loop order.
Hence the one-loop quantum energy is the sum of a classical part and the
contribution from the fermion vacuum polarization, E = Ecl +Evac. For both
d = 2 + 1 and d = 3 + 1, the classical part is given by

Ecl =
1
2

∫
d2xB2(x) . (8.6)

According to our master formula, Eq. (3.27), the vacuum polarization energy
is written as the sum of two separately finite terms Evac = Eδ + Eren

FD , with
Eren

FD = EFD + Ect.
Due to the axial symmetry of the vortex, the fermion scattering matrix

decomposes into partial waves labeled by the z-component of the total an-
gular momentum, M . For each partial wave there are two energy eigenvalues
±
√
k2 +m2 with two spin states for each given momentum k. So we have a

total of four degenerate states for a given angular momentum. We obtain the
phase shift contribution

Eδ = 2
∑

j

(|ωj | −m) +
2
π

∫ ∞

0

dk
k√

k2 +m2

∑
M

[δM (k)]2 , (8.7)

Eδ = − 1
2π

∑
j

(
ω2

j ln
ω2

j

m2
+m2 − ω2

j

)

− 1
π2

∫ ∞

0

dk k ln
k2 +m2

m2

∑
M

[δM (k)]2 ,

for d = 2 + 1 and d = 3 + 1, respectively. Here ωj (δM ) refers to one repre-
sentative of the bound state energies (phase shifts) from the four degenerate
contributions. While we have oversubtracted the integrand for d = 2 + 1,
finiteness of the integral requires the two indicated subtractions for d = 3+1.

We add back in the subtracted Born terms as Feynman diagrams. For the
vortex configuration, Eq. (8.2), the required second-order piece is

EFD =
8πF 2

(4π)d/2

∫ ∞

0

dp

[∫ ∞

0

dr
df(r)
dr

J0(pr)
]2

×
∫ 1

0

dx
x(1− x) pΓ (2− d/2)

[m2 + p2x(1− x)]2−d/2
, (8.8)

which is to be supplemented by the counterterm contribution

Ect =
c

2

∫
d2xB2(x) . (8.9)

To fix the (potentially infinite) coefficient c, it is customary to impose the
on-shell renormalization condition that the residue of the pole of the photon
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propagator at p2 = m2 be unity. This condition ensures that the photon cre-
ation and annihilation operators in the Fock decomposition generate physical
one-photon states. In turn it also maintains the physical electron charge. In
dimensional regularization we then find

cd=3 = − e2

6πm
, cd=4−ε = − e2

12π2

(
2
ε
− γ + ln

4π
m2

)
. (8.10)

The coefficient is finite in d = 2 + 1, reflecting that regularization is not
mandatory in this case.

8.1.3 Subtleties of Configurations with Net Flux and Embedding

The non-zero magnetic flux of the vortex causes subtle complications for the
fermion scattering problem. The gauge potentials only fall as 1/r for large
radii, no matter how localized the magnetic field is. As a consequence, the
phase shifts are discontinuous in the limit k → 0. Although this issue does
not cause problems for the momentum integral in Eq. (8.7), we can no longer
determine the number of bound states from Levinson’s theorem.

To understand the origin of the discontinuity, we briefly sketch the cal-
culation of the phase shifts. Using the standard representation for the Dirac
matrices, the Dirac equation in the vortex background decomposes into 2×2
blocks,

HΨ =
(
m H2

H2 −m

)
Ψ = ω Ψ . (8.11)

Since the wavefunction has a simple dependence on the z-coordinate along
the string, Ψ ∼ eipz, the off-diagonal 2 × 2 block in the Hamiltonian takes
the form

H2 =
(
p L†

L −p

)
with L = −ieiϕ

[
∂r + eAϕ(r) +

i

r
∂ϕ

]
. (8.12)

Here r and ϕ are polar coordinates in the xy-plane. We square Eq. (8.11) and
introduce two spinors η and ξ via Ψ = (η, ξ). This disentangles the scattering
channels,

H2
2η = (ω2 −m2)η = (k2 + p2)η with H2

2 =
(
p2 + L†L 0

0 LL† + p2

)
,

(8.13)

and similarly for ξ. The operators LL† and L†L are straightforwardly diago-
nalized by separation in r and ϕ. The latter introduces the angular momen-
tum quantum number � ∈ Z while the radial part of the equation of motion
reads

e−i�ϕ L†L
[
g
(1)
� (r)ei�ϕ

]
=

{
−∂2

r −
1
r
∂r +

(�− h(r))2

r2
− h′(r)

r

}
g
(1)
� (r)
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= k2 g
(1)
� (r)

e−i(�+1)ϕLL†
[
g
(2)
� (r) ei(�+1)ϕ

]
=

{
−∂2

r−
1
r
∂r+

(�+ 1− h(r))2

r2
+
h′(r)
r

}
g
(2)
� (r)

= k2 g
(2)
� (r) , (8.14)

where h(r) ≡ erAϕ(r) = F f(r) in terms of the profile function Eq. (8.2).
These equations represent standard scattering problems in two spatial di-
mensions with the potentials

V
(�)
1 (r) =

h(r)2

r2
− 2�

h(r)
r2

+
h′(r)
r

V
(�)
2 (r) =

h(r)2

r2
− 2(�+ 1)

h(r)
r2
− h′(r)

r
. (8.15)

Each of the two radial functions g(s)
� can be used to construct Dirac spinors

of total angular momentum M = �± 1
2 , corresponding to spin up or down, re-

spectively. We can then apply standard techniques for analyzing these second-
order differential equations to compute the phase shifts that enter Eq. (8.7).

It is straightforward to understand the problem at k = 0. For large radii
h(r)→ F , so the asymptotic form of the scattering problem (8.14) does not
describe a free particle. Instead, the differential equation is solved by a free
Bessel function with the angular momentum shifted by the flux: �→ �−F .
This is the wavefunction of an ideal or thin vortex along the z-axis. From the
asymptotics of the Bessel functions, it is easy to extract the phase shifts of
the thin vortex exactly [12].

We could define the Jost function and phase shift relative to the thin
vortex, and simply add the known phase shift of the latter. This procedure
breaks down, however, at k = 0, when the asymptotic form of the thin vortex
solution is never reached. As a consequence, the phase shift at k = 0 is
ill-defined. Fortunately the k-integral in the phase shift formula (8.7) still
exists.3 The problems at k = 0 are associated with threshold bound states
and prevent us from applying Levinson’s theorem [8]. Hence Eq. (8.7) can
still be used provided that the bound states are carefully searched for.

The subtleties at k = 0 originate solely from the long-ranged nature of the
potentials, Eq. (8.15). Instead of modifying the spectral method, it is more
appropriate to modify the problem such that regular scattering potentials
arise which fall fast enough at infinity. This can be done by the embedding
procedure to be introduced next.

Bianchi’s identity tells us that flux lines in d = 3+1 must either be closed
or end in magnetic (Dirac) monopoles. Hence a single flux tube extending to
infinity is not physical. The same conclusion can be reached in d = 2 + 1,

3 See also Refs. [13–15] for a discussion of the relation between the discontinuity
of the phase shifts and the anomaly in d = 2 + 1.
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since in that case Bianchi’s identity states that magnetic flux is conserved
and cannot be created by a smooth deformation of the vacuum. To embed the
vortex line in a physically sensible configuration, we must include a region
of return flux such that the initial vortex closes at (compactified) infinity.
Once the flux tube is embedded in a configuration with zero net flux, the
potentials for the scattering problem fall fast enough at spatial infinity and
the subtleties mentioned above do not emerge.

This solution comes, however, at a price: We must now ensure that the
quantum energy of the return flux can be disentangled from the energy of
the vortex flux tube. We have to make sure that it is well separated from the
vortex core and integrates to a negligible contribution. We will numerically
establish that this is indeed the case once (i) the separation between the
vortex and the return flux region is much larger than the vortex extension
and (ii) the return flux is diffuse. Then the quantum energy of the vortex is
not affected by the embedding and there is no need to disentangle the vortex
core region explicitly.

Technically, the embedding can be achieved by a modification of the profile
function f(r) from Eq. (8.2). We must add a piece fR(r) that ensures f(r) +
fR(r) → 0 at large radii r ≥ R � 1/m, while leaving the vortex core r < w
and a large intermediate region w < r < R unchanged. For the Gaußian flux
tube, Eq. (8.5), a suitable family of return profiles is

fR(r) = −arctan[Ξ(r2/R2 − 1)] + arctan(Ξ)
π
2 + arctan(Ξ)

, (8.16)

where we will fix Ξ = 16 and vary the parameter R. A straightforward
calculation demonstrates explicitly that the classical energy is unaffected by
the embedding at large R: limR→∞Ecl[f + fR] = Ecl[f ]. Figure 8.1 shows
that this is also the case for the renormalized Feynman diagram contribution
to the quantum energy, cf. Eqs. (8.8) and (8.9).

8.1.4 Numerical Results for the Quantum Energy

In this section we present the central results of numerical studies and com-
pare our results with approximate methods such as the derivative expan-
sion [4, 16, 17]. It approximates the fermion determinant for slowly varying
background fields and becomes exact when the background field becomes
spatially constant. In the present parameterization, Eq. (8.5), this implies
that the width w of the flux tubes tends to infinity while the magnetic field
at the origin, B(0), is held fixed.

In d = 2 + 1, the first two orders of the (unrenormalized) expansion are

EDE =
∫
d2x

(
|eB|
4π

) 3
2
∫ ∞

0

ds√
s3

exp
(
−sm

2

|eB|

) (
coth(s)− 1

s

)
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Fig. 8.1 Renormalized d = 2+1 and d = 3+1 Feynman diagram energies, Eq. (8.8),
in appropriate units of m as functions of the return flux radius for w = 1/m and
F = 4.8. The solid lines correspond to the energies without the return flux

+
1
4

∫
d2x

|e∂B|2

|4πeB| 32

∫ ∞

0

ds√
s

exp
(
−sm

2

|eB|

)
d3(s coth s)

ds3
+ · · · . (8.17)

If we take B(x) as the Gaußian flux tube (8.5) and take B(0) independent
of the width w, a simple scaling argument reveals that the first term is of
order O(w2), the second one of order O(w0), and all omitted terms contain
more derivatives so that they vanish as w →∞. This hierarchy would not be
present if, as in Ref. [10], the flux F were held fixed.

To compare our results to the derivative expansion, we must use the same
(on-shell) renormalization prescription in both calculations. For d = 2 + 1,
this requires a finite counterterm even though no ultraviolet divergence is
encountered,

Ect =
e2B(0)2w2

24m
. (8.18)

This term is of orderO(w2) and thus affects the leading term in the expansion.
In d = 3 + 1, the same approximation for the renormalized one-loop energy
(per unit length) reads [16, 17]

EDE =
∫
d2x
|eB|2
8π2

∫ ∞

0

ds

s−2
exp
(
−sm

2

|eB|

) (
coth(s)− 1

s
− s

3

)

−
∫
d2x

|e∂B|2
|32π2eB|

∫ ∞

0

ds exp
(
−sm

2

|eB|

)

×
(

1− 4 coth2 s+ 3 coth4 s+
3 coth s

s
(1− coth2 s)

)
+ · · · . (8.19)
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Fig. 8.2 Renormalized one-loop energies for fixed values of the magnetic field at the
origin, plotted as functions of the width of the flux tube. The left panel corresponds
to d = 2 + 1 while the right panel shows d = 3 + 1. The lines correspond to the
prediction of the derivative expansion as explained in the main text. From top to
bottom, eB(0)/m2 = 1.1, 2, 2.5, 3, 4, 5

Again, when B(0) is held fixed for a Gaußian profile, this expansion is strictly
organized in inverse powers of the width w.

In Fig. 8.2 we compare the exact result from Eqs. (8.7)–(8.10) to the
derivative approximation for different values of the fixed magnetic field eB(0).
The first important observation is that the vacuum polarization energies are
negative in all cases, i.e.,the binding to the fermions tends to decrease the
vortex energy. The effect is, however, much too small to produce a negative
total energy—as we should expect since otherwise it would indicate an insta-
bility of the vacuum against spontaneous formation of vortices. Second, there
is excellent agreement with the derivative expansion for all widths w ≥ 1/m
and also no qualitative difference between the d = 2 + 1 and d = 3 + 1 cases.
For the latter the finite renormalization in d = 2 + 1 is essential, since the
counterterm contributes at leading order.

If, alternatively, the flux F rather than B(0) is held fixed as w is varied,
the perturbation expansion applies as w →∞. It thus suffices to consider the
renormalized two-point functions,

E
(2)
FD =

F 2

30m3w4
×
{

1 +O(w−6) d = 2 + 1
1
π +O(w−6) d = 3 + 1 . (8.20)

There is an important observation for the d = 2+1 case where the two-point
function is finite without renormalization: Without the finite renormalization,
Eq. (8.10), E(2)

FD would start at O(w−2) suggesting a severe difference from the
d = 3+1 case. We see that identical renormalization conditions are mandatory
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for a sensible comparison. Then the two cases appear to be very similar.
Finally, the result for the two-point function and similar scaling arguments
for all higher orders show that the one-loop energy of a vortex vanishes with
increasing width w. This explains why the return flux does not contribute to
the quantum energy in the embedding scenario.

8.1.5 Quantum Energy Density

The quantum energy density gives more detailed information on how the
vacuum polarization energy is distributed between the vortex core and the
return flux in the embedding scenario. We will observe that the respective
contributions are cleanly identified and disentangled.

In Sect. 3.2.1 we have defined the radial quantum energy density to be
the vacuum expectation value of the quantum energy–momentum tensor:
ε(r) = 2πr 〈T00(x)〉. Figure 8.3 shows the radial quantum energy density of
a Gaußian flux tube, Eq. (8.2), supplemented by a return flux as described
above. The behavior is exactly as expected: There is a clear separation be-
tween the vortex core and the return flux region; furthermore, the density of
the return flux becomes suppressed as the flux moves out (R→∞). Finally,
the energy density in the vortex core region is completely unaffected by the
embedding, once the return flux is separated by more than roughly five times
the core width.
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Fig. 8.3 One-loop energy densities of configurations with zero net flux, plotted as
functions of the separation R = 8, 10, 12/m between the vortex core and the return
flux. The parameters are eB(0) = 4m2 and w = 1.5/m. The left and right panels
show d = 2 + 1 and d = 3 + 1, respectively

Figure 8.4 shows that the Feynman diagram parts dominate in both the
vortex core and return flux regions. For small core widths, the phase shift
piece is completely negligible, while it gives about a 30% contribution to the
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Fig. 8.4 Feynman diagram (dashed) and phase shift (dotted) contributions to the
energy density for configurations with zero net flux. The sum (full) of the two
contributions is the one-loop energy density. Two cases are considered, w = 0.75/m
(left panel) and w = 1.5/m (right panel), both with eB(0) = 4m2 and R = 8/m,
for d = 2 + 1 (top) and d = 3 + 1 (bottom)

vortex density at larger widths. In the return flux region, the phase shift
contribution is essentially zero. A closer look at the numerical results reveals
that this result stems from a cancellation after summing over many (several
hundred) angular momentum channels.

As seen in Fig. 8.4 the magnitude of the energy density increases with
w in the return flux region when R and B(0) are fixed. However, it has
contributions of either sign and essentially integrates to zero. This result
confirms our earlier statement that the return flux can be neglected.

We can obtain an expression for the derivative expansion approximation
to the energy density by simply omitting the space integral in Eqs. (8.17)
and (8.19), but it may differ from ε(r) by a total derivative. Fitting an
ansatz for this (unknown) total derivative term allows for a fairly good agree-
ment of the exact density and its derivative approximation in the vortex core
region [8].
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8.2 Flux Tubes and Strings in the Electroweak
Standard Model

Since its introduction in the early 1970s, the electroweak standard model has
had impressive success in the perturbative description of particle properties
and processes involving the weak force. There were early attempts to explore
the non-perturbative sector of the model [18], too, but the issue was not
actively pursued until the mid-1980s [19, 20], when it became clear that
electroweak solitons could have a profound impact on cosmological questions.

The classical equations of motions in electroweak theory admit extended
string-like solitons called Z-strings or electroweak strings [18, 21, 22]. They
are not topological, hence any stabilization must result from dynamical pro-
cesses, which are difficult to compute. A perturbative evaluation of the
fermion determinant at weak couplings suggests that the fermion fluctua-
tions tend to destabilize the string [23]. But this need not be the final answer.
Binding fermions to the string core might gain enough energy to stabilize the
string at a fixed fermion number. Of course, the consistent description of such
a mechanism must include the polarization of the entire Dirac spectrum by
the string background.

Stable electroweak strings could have significant cosmological conse-
quences [24–26]: A network of strings could contribute to the dark energy
that is required to explain the observed cosmic acceleration [27, 28], although
the understanding of the underlying dynamics is still incomplete [29–31]. Like
any magnetic flux tube, the electroweak string must either be closed or end
in monopole–antimonopole pairs, which would provide a primordial magnetic
field [18]. Finally, at the electroweak phase transition a cluster of stable strings
provides a scenario for baryogenesis, since the core of the string has copious
baryon number violation due to the vanishing Higgs condensate. As pointed
out in Ref. [32], the string clusters provide out-of-equilibrium regions with-
out the need for a first-order phase transition, in contrast to the traditional
bubble-nucleation approach.

There is also theoretical interest in the quantum properties of electroweak
strings. Decoupling arguments [33, 34] suggest that for an SU(2) fermion dou-
blet with large Yukawa coupling (and thus large mass) soliton configurations
enter the low-energy spectrum to cancel the Witten anomaly and maintain
consistency of the theory. Connections between electroweak strings and non-
perturbative anomalies were also demonstrated in Refs. [35, 36].

Central to these questions is an unambiguous and exact evaluation of the
fermion determinant in the string background. Previous attempts in this di-
rection have been hampered by problems with the separation of finite and
divergent pieces in the quantum energy and the ensuing renormalization [37].
The spectral approach is, of course, ideally suited to handle such complica-
tions. Because of the complexity of the standard model calculation we con-
sider a simplified model [38] in which:
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1. the spacetime dimension is reduced to d = 2 + 1 (analogous to a trans-
lationally invariant configuration in d = 3 + 1 dimensions). The smaller
number of dimensions simply reduces the number of Feynman diagrams
to be computed;

2. the Weinberg angle θW is set to zero, i.e., the U(1) factor in the gauge
group decouples. This avoids long-ranged photon fields associated with
the Aharonov–Bohm phases and the need for embedding;

3. as justified in the large-N limit, quantum corrections are taken from the
fermion sector only;

4. we consider only a single heavy fermion doublet, with the CKM matrix
set to the identity;

5. the masses within the fermion doublet are taken equal to enable a partial
wave expansion of the quantum fluctuations.

8.2.1 The Bosonic Sector

In the bosonic (Higgs-gauge) sector the action functional reads

SHG[φ,W ] =
∫
d3x

[
−1

2
tr (FμνFμν) + (Dμφ)†Dμφ− λ

(
φ†φ− v2

)2]
,

(8.21)

where Fμν = ∂μWν−∂νWμ+ig[Wμ,Wν ] is the field strength tensor associated
with the SU(2) gauge field

Wμ = W a
μ T

a . (8.22)

The SU(2) generators are defined in terms of Pauli matrices: T a = τa/2. We
also define Zμ = W 3

μ and W±
μ = 1√

2

(
W 1

μ ± iW 2
μ

)
. The complex scalar Higgs

field lives in the fundamental representation of SU(2),

φ =
(
φ+

φ0

)
, (8.23)

and couples minimally to the gauge fields via the covariant derivative

Dμφ = (∂μ + igWμ)φ =
[
∂μ − igQZZμ − ig

(
W+

μ T
− +W−

μ T
+
)]
φ . (8.24)

By construction, the action, Eq. (8.21), is invariant under SU(2) gauge rota-
tions V = exp(iθa(x)T a),

φ→ V φ and ig Wμ → V (∂μ + igWμ)V † . (8.25)

For positive values of the self-coupling λ > 0, the Higgs doublet acquires a
vacuum expectation value (VEV ), conventionally chosen as

〈φ0〉 = v , 〈φ+〉 = 0 . (8.26)

As a consequence, the isospin symmetry breaks completely and there are three
would-be Goldstone modes from the φ-fluctuations, which become longitudi-
nal modes of the gauge field as it acquires the tree-level mass MW = gv/

√
2.

The remaining Higgs excitations have tree-level mass MH = 2v
√
λ.
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8.2.2 The String Solutions

We introduce radial and angular coordinates ρ and ϕ in the xy-plane. As
ρ→∞ the field configuration must be a pure gauge,

φ(∞) = V

(
0
v

)
and gW (∞)

μ = i V ∂μV
−1 , (8.27)

where the SU(2) rotation V = V (ϕ) maps the circle S1 at infinity onto the
gauge group G. In the electromagnetic case G = U(1), this map is char-
acterized by an integral winding number, Π1(U(1)) = Z, meaning that the
resulting Nielsen–Olesen vortex [39] is topologically stable. For the weak
gauge group G = SU(2), Nielsen–Olesen type of solutions can be embedded
by considering maps from the spatial boundary S1 to any U(1) subgroup of
G = SU(2). Since Π1(SU(2)) = 0, the embedded string configuration is not
topologically stable against deformations in the full SU(2) group.

We choose the U(1) subgroup associated with the W 3
μ gauge fields. In our

model this choice is arbitrary, but it corresponds to the Z-string in the full
electroweak model. The boundary conditions at ρ → ∞ are specified by the
map

V (ϕ) = e−2inϕ τ3 , (8.28)

where n must be an integer to maintain a single-valued Higgs fields. Next
we insert V (ϕ) in Eq. (8.27) and furnish the fields with profile functions to
model the vortex core:

φ0 = vfH(ρ) einϕ and W 3 =
2n
gρ

fG(ρ)eϕ , (8.29)

with all other fields zero. The profile functions fH and fG must vanish near
the origin to avoid singularities and approach unity at infinity to comply with
Eq. (8.27). Minimizing the classical energy of the vortex leads to ordinary
differential equations for fH and fG, which can be integrated numerically [39].

The vortex carries quantized magnetic flux F , which we compute from
the pseudoscalar magnetic field B = ∂1W

3
2 − ∂2W

3
1 ,

F =
∫
d2xB =

4πn
g

, (8.30)

in d = 2 + 1. This flux would flow along the vortex tube in d = 3 + 1.
The classical energy density creates a pressure that tends to spread out the
flux, while the Higgs condensate is suppressed in the region of non-vanishing
B, which tends to compress the flux. Balancing these two competing effects
stabilizes the vortex at an equilibrium thickness.

8.2.3 The Sphaleron Square

Since any string solution can be continuously deformed into the vacuum along
a path for which the energy is always finite, such a path is a good starting
point for the string ansatz to be used in our variational studies.
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We construct two-parameter loops of configurations with the Z-string
at the top of the tightest loop [36, 40]: Let the angles ξ1, ξ2 ∈ [0, π] and
α ∈ [0, 2π] parameterize a three-dimensional sphere S3 that is embedded
in R4,

n̂(ξ1, ξ2, α) =

⎛
⎜⎝

sin ξ1 sin ξ2 cosα
cos ξ1

sin ξ1 cos ξ2
sin ξ1 sin ξ2 sinα

⎞
⎟⎠ . (8.31)

This unit vector defines a map S3 �→ SU(2) with unit winding number:
U (ξ1, ξ2, α) = n̂01− in̂ · τ . From U , we can construct a map with winding
number n as the nth power of U or by scaling the azimuthal angle: U →
U (ξ1, ξ2, nα) [41]. If the S1 subspace spanned by α is identified with the
circle at ρ → ∞, a two-parameter family of maps characterizing possible
string boundary conditions (8.27) emerges,

Vξ1ξ2(ϕ) = U (ξ1, ξ2, ϕ) . (8.32)

As before, Vξ1ξ2 induces string configurations by furnishing the asymptotic
form, Eq. (8.27), with appropriate profile functions,

φ = vfH(ρ)

(
−i cos ξ1 − sin ξ1 cos ξ2

sin ξ1 sin ξ2 einϕ

)

W 3 =
2n
gρ

eϕfG(ρ) sin2 ξ1 sin2 ξ2 ,

W− =
√

2n
gρ

eϕ e−inϕ fG(ρ) sin ξ1 sin ξ2 (i cos ξ1 + sin ξ1 cos ξ2) . (8.33)

The choice ξ1 = ξ2 = π/2 yields the Nielsen–Olesen Z-string. From there
we can go to any point on the boundary of the square, say ξ1 = 0, and then
deform fH(ρ) smoothly to unity everywhere to reach a vacuum configuration.
The classical energy density on the sphaleron square is straightforwardly
computed from the integrand in Eq. (8.21),

Ecl =
[

2
g2

(
f ′G
ρ

)2

+
v2

ρ2
f2

H (1− fG)2
]
n2 sin2 ξ1 sin2 ξ2

+v2 (f ′H)2 + λv4
(
1− f2

H

)2
. (8.34)

The classical energy of these configurations is maximal at the Z-string; we
use the term “sphaleron” here to indicate that this situation is analogous to
the standard sphaleron of SU(2) Higgs-gauge theory [20].

As a last minor extension of the vortex ansatz, we introduce an additional
radial function for the charged Higgs field:
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φ =
(
fH(ρ)(−i cos ξ1 − sin ξ1 cos ξ2) + fP (ρ)

fH(ρ) sin ξ1 sin ξ2 einϕ

)
(8.35)

and W (i) given in Eq. (8.33). The new profile function fP (ρ) is non-zero at
the origin and vanishes as ρ → ∞. The classical energy density, Eq. (8.34),
is supplemented by

ΔEcl = v2

[
f ′2P +

n2

ρ2
f2

P f
2
G sin2 ξ1

]
+ v4f2

P

[
f2

P + 2f2
H − 2

]
. (8.36)

The magnitude of the Higgs field takes the simple form |φ|2 = f2
H + f2

P along
the line ξ2 = π/2, onto which will restrict our variational search.

We will refer to the two-parameter family of configurations of Eqs. (8.33)
and (8.35), as the sphaleron square.

8.2.4 The Fermion Action

In d = 2 + 1 the action for the degenerate isospin doublet Ψ is4

SF [Ψ,Φ,Wμ] =
∫
d3x
[
Ψ̄ iγμDμPLΨ + Ψ̄ iγμ∂μPRΨ − fΨ̄

(
ΦPR + Φ†PL

)
Ψ
]
,

(8.37)
where

PL,R =
1∓ γ5

2
and Φ =

(
φ∗0 φ+

−φ∗+ φ0

)
. (8.38)

As in the full electroweak theory, only left-handed fermions couple to the
gauge fields via the covariant derivative Dμ in Eq. (8.24). The Higgs field
VEV v induces the degenerate fermion mass mf = fv.

In d = 2 + 1 the use of the standard electroweak parameters is problem-
atic because the (dimensionful) gauge coupling constant g can no longer be
expressed by the Fermi constant GF ≈ 10−5m−2

proton via GF /
√

2 = g2/M2
W =

2/v2. To see which value of v should be chosen, consider the classical energy
(or energy per unit length) in Eq. (8.34). In any number of dimension this
quantity takes the form v2 times a dimensionless function involving only ra-
tios of masses. Thus the mass dimension stems from the prefactor v2 only,
and it is this factor which must be modified from its known d = 3 + 1 value
to d = 2 + 1 by multiplication with an appropriate length scale. Since all
dimensionful quantities are related to the mass mf of the heavy fermion, we
expect that the appropriate length scale is the Compton wavelength of the
heavy fermion, 2π/mf . This is almost correct; the treatment of the QED flux
tube in the previous section (cf. Eq. (8.20)) indicates that the proper scaling
factor is in fact half the Compton wavelength. Thus we take

4 As before, we use four-component Dirac spinors. Together with the two isospin
degrees of freedom, the quark spinors Ψ thus have eight complex components.
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v2
d=2+1 =

π

mf
v2

d=3+1 =
π

2
√

2GFmf

. (8.39)

The remaining parameters, i.e., the masses that determine the coupling con-
stants f , g, and λ, are fixed by electroweak phenomenology,

mf = fvd=3+1 = 170GeV ,
gvd=3+1√

2
= 80GeV ,

and 2vd=3+1

√
λ = 115GeV . (8.40)

Here the heavy fermion doublet is identified with the top/bottom pair and
mf corresponds to the experimental top quark mass. In the numerical studies
below, parameter sets with a very heavy fermion will also be investigated to
study possible decoupling scenarios.

8.2.5 Fermions on Strings

It is conceivable that quantum interactions with leptons and quarks stabilize
the classically unstable string. The Higgs condensate is suppressed in the
vortex core so that the fermions become light (or even massless, for ξ1 = π/2)
on the string and energy can be gained by populating these bound states.
If the energy gain is large enough, the string eventually becomes a stable
multi-fermion object.

Let us assume that Nf fermions are trapped along the string by occupy-
ing Nf of the bound states induced by the string background. These bound
states are characterized by energy eigenvalues5 0 ≤ ωi < mf . The explicit
occupation of Nf -bound states then contributes

E
(Nf )
occ =

Nf∑
i=1

ωi (8.41)

to the total energy. The minimal total energy is found when the Nf most
tightly bound states are occupied. In total, the energy of this configuration
is

E
(Nf )
eff = Ecl + E

(Nf )
occ + Evac . (8.42)

For consistency of the �-expansion we must also include the vacuum polar-
ization energy, Evac. This effective energy is to be compared with the mass
of Nf perturbative fermions, so that stabilization occurs when

E
(Nf )
eff < mfNf . (8.43)

Within the variational search for a configuration that satisfies Eq. (8.43),
certain situations are favorable:
5 The vortex ansatz Eq. (8.35) leads to CP -invariant interactions for the fermions.

Hence it suffices to consider non-negative-energy eigenvalues.
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1. The perturbative fermion should be as heavy as possible. Thus we con-
centrate on the top quark contribution to E(Nf )

eff .
2. A large internal (color) degeneracy NC enhances the quantum piece of

the total energy. With such a degeneracy, the fermion number is (Nf NC)
and the stability criterion reads

Ecl +NC

[
E

(Nf )
occ + Evac

]
< mf (Nf NC) (8.44)

with all energies on the left computed at NC = 1.

8.2.6 The Vacuum Polarization Energy

As usual, the most difficult part of the calculation is the properly renormal-
ized Evac. The main difficulty in previous attempts [37] was the extraction
of divergences and the (perturbative) renormalization of a non-perturbative
background. Obviously, the spectral approach is perfectly suited to address
this problem. We compute Evac as the sum of two separately finite pieces: an
integral over Born-subtracted phase shifts and a set of renormalized Feynman
diagrams, cf.Eq. (3.27). We discuss the latter first.

(a) Feynman Diagrams and Counterterms

We do not give explicit formulae for the renormalized Feynman diagram
contribution but merely outline the computation. We obtain the one-fermion
loop Feynman diagrams by expanding

− T
∞∑

n=0

E
(n)
FD = −i ln det [iγμ∂μ −mf1− U(W,Φ)] , (8.45)

in powers of the background potential U(W,Φ) with the vortex configuration,
Eqs. (8.33) and (8.35), substituted for W and Φ. By gauge invariance, the
Feynman diagrams with external lines representing gauge fields are finite in
d = 2 + 1. In order to make contact with the d = 3 + 1 problem, however,
we include all counterterms from Eq. (6.49). In the case at hand, only the
coefficient c3 diverges when the ultraviolet regulator is removed. We impose
renormalization conditions similar to those in Sect. 6.2:

a. choose the no-tadpole condition to fix c3. This ensures that neither the
VEV 〈φ〉 = v (0 , 1)T nor the perturbative fermion mass mf receive ra-
diative corrections;

b. fix the pole of the Higgs propagator to be at its tree-level mass, MH, with
residue one. These conditions yield c2 and c4;

c. set the residue of the pole of the gauge field propagator to one in unitary
gauge. This fixes c1 and predicts the position of that pole, i.e., the mass
of the gauge field, MW.
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Having fixed these coefficients, the counterterm energy, Ect, is straightfor-
wardly computed by substituting the vortex configuration. Denoting byE(2H)

FD

the Feynman diagrams that have one or two external Higgs but no gauge bo-
son lines, the finiteness of c1, c2, and c4 suggests that

EFD[W,Φ] = E
(2H)
FD [W,Φ] +Ect[W,Φ] (8.46)

is the finite quantity that resembles the last two terms in Eq. (3.27). Unfor-
tunately, this is not true. Since individual Feynman diagrams are not gauge
invariant, the twist in the vortex Higgs field at spatial infinity yields infrared
divergences in both the diagrams and the spectral calculation. However, for
d = 2 + 1, only the c3 counterterm involves an ultraviolet divergence and
therefore any configuration with identical Φ†Φ can be considered in the sub-
traction process. In particular, we may consider the fake configuration W̃
and Φ̃ that is defined on the boundary of the sphaleron square: ξ1 = 0 and
ξ2 = π/2. That is, the last two terms in Eq. (3.27) are replaced by

ẼFD[W,Φ] = E
(2H)
FD [W̃ , Φ̃] + Ect[W,Φ] . (8.47)

Explicit (but lengthy) expressions for ẼFD[W,Φ] can be found in Ref. [38].

(b) Phase Shift Piece

The Born subtractions in the phase shift calculation must also be per-
formed with W̃ and Φ̃. We call δ�(k) the total phase shift, which is 1

2i times
the logarithm of the trace of the scattering matrix, in the channel with gen-
eralized angular momentum �. This conserved quantum number emerges be-
cause for the degenerate fermion doublet the fermion scattering matrix is
block-diagonal with respect to the operator

K = L3 + S3 − nT3γ5 . (8.48)

In the next step we compute the first two terms in the Born expansion for
the phase shift for the background fields W̃ and Φ̃. We denote these phase
shifts by δ̃

(n)
� (k), where the superscript n = 1, 2 refers to the order of the

Born series. We get

[δ(k)]2 =
∑

�

[
δ� − δ̃(1)� (k)− δ̃(2)� (k)

]
, (8.49)

which subtracts all ultraviolet divergences in d = 2 + 1. We compute the
vacuum polarization energy from

Evac = − 1
2

∑
j=b.s.

(|ωj | −mf )− 1
2

∫ ∞

0

dk

π
(
√
k2 +m2

f −mf )
d

dk
[δ(k)]2

+ẼFD[W,Φ] , (8.50)
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where ωj are the bound state energies.
The final ingredients for the computation are the phase shifts in the vortex

background. This calculation is similar to the QED case studied in the last
chapter, but technically more challenging since it is a multi-channel scattering
problem, like the hedgehog configurations discussed in Chap. 6.

The starting point is the Dirac equation in 2 + 1 dimensions6

hDΨω,N�
(ρ, ϕ) = ωΨω,N�

(ρ, ϕ) , (8.51)

where the single-particle Dirac operator is read off from Eq. (8.37),

hD = −iαi∂i + γ0f
(
PRΦ+ PLΦ

†)− g αi

[
ZiQZ + PL(W+

i T
− +W−

i T
+)
]
.

(8.52)

For the vortex backgrounds with winding number n the generator K,
Eq. (8.48), commutes with the Hamiltonian hD, so that its eigenvalues
N� = �+ 1

2
+ n

2
label the scattering channels. Furthermore α3 anticommutes

with hD. Hence, any eigenstate Ψ of the Hamiltonian has a partner α3Ψ with
the opposite sign of the energy so that the spectrum of hD is symmetric
about zero.

We turn the Dirac equation into a coupled set of ordinary differential
equations for eight radial functions y1, . . . , y8 by the parameterization

Ψω,N�
(ρ, ϕ) =

⎛
⎜⎜⎝

y5 e
i�ϕ |1

2
〉+ y7 e

i(�+n)ϕ | − 1
2
〉

iy6 e
i(�+1)ϕ | 12〉+ iy8 e

i(�+n+1)ϕ | − 1
2 〉

y1 e
i(�+n)ϕ |12 〉+ y3 e

i�ϕ | − 1
2 〉

iy2 e
i(�+n+1)ϕ | 12 〉+ iy4 e

i(�+1)ϕ | − 1
2 〉

⎞
⎟⎟⎠ . (8.53)

Here the kets are eigenstates of T 3. Shooting for square integrable solutions
that are regular at ρ = 0 yields the bound state energies ωj . To treat the
scattering problem, we eliminate the left-handed fields ΨL, which are the
upper components (y5, . . . , y8) in the chiral representation. Then we are left
with four complex second-order equations for the radial functions y1, . . . , y4.
For a given N� (or �) we write formally (omitting the angular momentum
label �)

4∑
j=1

{
D(ρ) + N (ρ)

d

dρ
+ M (ρ)

}
ij

yj(ρ) = 0 . (8.54)

The operator D is associated with a generalized centrifugal barrier,

D(ρ) = 1

(
d2

dρ2
+

1
ρ

d

dρ
+ k2

)
− 1
ρ2

diag
[
(�+ n)2 , (�+ n+ 1)2 , �2 , (�+ 1)2

]
,

(8.55)
6 For z-independent configurations in d = 3 + 1 the same equation and thus the

interface formalism (Sect. 3.7) hold since we adopt four-component Dirac spinors.
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where k2 = ω2 − m2
f . The matrices N (ρ) and M (ρ) contain the vortex

background. Their explicit form is lengthy and we refrain from presenting
them explicitly. At large radii ρ → ∞, both M and N vanish and the four
equations decouple. Notice that the free case M = N = 0 describes a non-
trivial vacuum of winding number n rather than the trivial vacuum with
all fields vanishing.7 In turn, no long-range background fields emerge in the
scattering problem and no embeddings or return fluxes as in the QED case
are required.

In each angular momentum channel, there are four independent vector
solutions y(ρ), which we combine in the rows of a matrix Y , cf. Sect. 6.1.2. In
analogy to Eq. (6.16), we factorize the solutions at vanishing background with
outgoing spherical wave boundary conditions, Y (ρ, k) = F (k, ρ) ·H (kρ),
with

H (x) = diag
[
h

(1)
|�+n|(x) , h

(1)
|�+n+1|(x) , h

(1)
|�| (x) , h

(1)
|�+1|(x)

]
. (8.56)

The differential equation for the Jost matrix F (k, ρ) becomes

F ′′ +
1
ρ
F ′ + 2F ′L ′ +

1
ρ2

[F ,O] + N (F ′ + FL ′) + MF = 0 , (8.57)

where L (kρ) ≡ ln H (kρ) and primes denote derivatives with respect to
the radial coordinate. The boundary conditions at ρ → ∞ are obviously
F (k, ρ)→ 1 and F ′(k, ρ)→ 0.

The matrices M and N have complex elements. Thus the conjugated
matrix Y ∗ does not solve the equations of motion. Instead, incoming waves
are described by a separate set Y , which must be computed from Eq. (8.54)
with the replacement H →H = H ∗. The scattering analysis now proceeds
as in Sect. 6.1.2 with Y ∗ replaced by Y . The S-matrix parameterizes the full
scattering solution as Ysc(ρ) = −Y (ρ) + Y (ρ) ·S (k) and the requirement
that Ysc(ρ) is regular at the origin determines S , from which the sum of
the eigenphase shifts, δ(k), is extracted. The final result is δ(k) = δ(k, 0)
where [38]

δ(k, ρ) ≡ 1
2i

tr ln
[
F−1(k, ρ) ·F (k, ρ)

]
. (8.58)

Again, ambiguities of multiples of 2π in the numerical computation are
avoided by integrating

∂δ(k, ρ)
∂ρ

= − 1
2i

Tr
[
F ′ ·F−1 −F

′ ·F−1
]

with lim
ρ→∞ δ(k, ρ) = 0 ,

(8.59)
from ρ =∞ to 0, along with the system for F and F .

Alternatively, the complex 4× 4 problem can be elevated to a real 8× 8
one from which a scattering matrix is extracted as in Sect. 6.1.2. Then the
7 As in the case of the sphaleron, we have infinitely many gauge-equivalent ground

states separated by a finite barrier.
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number of degrees of freedom is doubled and one can verify numerically [38]
that the resulting sum over eigenphase shifts is 2δ(k, ρ).

8.2.7 Numerical Results

The central goal is to find a vortex configuration which is energetically favored
over the trivial vacuum of the same fermion number, so that Eq. (8.44) is
satisfied. The scan of even a restricted configuration space is numerically
expensive and cannot be exhaustive. Here we restrict ourselves to the ansatz
of Sect. 8.2.3 and introduce variational parameters by deforming the Z-string
configuration:

fH(ρ) = 1− e−ρ/wH , fG(ρ) = 1− e−(ρ/wG)2 , and fP (ρ) = aP e
−ρ/wP .

(8.60)
Such deformations also ensure that the profile functions obey the proper
boundary conditions and that the classical energy is always finite. Altogether,
the ansatz contains five variational parameters, wH , wG, wP , and aP from the
profiles and ξ1 from the sphaleron square.8 Of course, it is still possible that
there exist stable configurations outside the space spanned by this ansatz.

In all numerical studies we adopt unit winding number, n = 1. If not
explicitly stated, we measure dimensionful quantities in units of the fermion
mass, mf , or its inverse.

(a) Classical Energy

The scale is set by the classical energy of the string background on
the sphaleron square Ecl = 2π

∫∞
0
dρ ρEcl(ρ), with Ecl given in Eqs. (8.34)

and (8.36). For the empirically motivated parameter set, Eq. (8.40), the clas-
sical energy depends strongly on the angle ξ1 [38], favoring small values of ξ1
and narrow Higgs fields, i.e.,wH � 1, since Ecl increases roughly quadrati-
cally with wH at small ξ1. The dependence on other parameters, in particular
the charged Higgs component, is rather small; for aP ≥ 0.5 the energy rises
linearly with the amplitude of the charged Higgs. The largest possible ad-
mixture of gauge fields, ξ1 = π/2, corresponds to the pure Z-string. Then a
minimum emerges at a moderate width wH ∼ 3, but the overall value of the
minimum is much larger than in the cases of smaller ξ1.

For artificially large fermion masses, mf = 1.5GeV, the Higgs field VEV
is reduced because of the scaling in Eq. (8.40), and the classical energy be-
comes insensitive to the shape of the Higgs field. Instead, the dependence on
the width of the gauge field is now enhanced, except at very small ξ1, where
the gauge field is suppressed and Ecl � 0.4 is nearly constant. At ξ1 = 0.5,
the classical energy varies strongly, from 25 to 2, as the gauge field width wG

is increased from 1.5 to 5.5. Close to the Z-string (ξ1 � π/2), this effect is
even more dramatic: Ecl drops from around Ecl = 50 at wG ∼ 1.5 to Ecl ∼ 2
8 We recall that ξ2 is fixed to π/2, cf.Eqs. (8.33) and (8.35).
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at wG = 12. Thus the classical energy favors a suppression of the gauge field
contribution, either by having the gauge admixture ξ1 small or by diffusing
the gauge field to very large widths wG. The central question is whether the
gain in energy due to the emergence of a fermion zero mode at ξ1 = π/2
compensates for the increase in the classical energy. Since Ecl ∼ 20 for the
Z-string, and every zero mode gives an energy gain of one, a large number
of fermions (around 20 or so) is required to break even, unless the vacuum
polarization produces large additional bindings.

(b) Bound States

For the original Z-string, i.e., ξ1 = π/2 and φ+ = 0, an exact zero mode
exists and much emphasis was put in the early literature on possible stabi-
lizing effects from this mode. However, the perturbative analysis of Naculich
[23] indicated that the zero mode does not stabilize the Z-string against a
φ+ condensation, once the fermion determinant is (approximately) included.
However, the most important result from studying the whole bound state
spectrum is that there exist very many bound states. This happens both in
individual channels and spreads over a large range of angular momenta. In
turn, the properties of individual strongly bound states (or zero modes) can
be less important than previously thought.

Though the gauge field creates stronger binding of the lowest lying state,
the pure Higgs configuration can (partially) compensate for this by occupying
many of the less-strongly bound states; after all, a large fermion number
is required anyhow. Since the near-zero mode in the gauge vortex is not
accompanied by further tightly bound states, the increase of binding of the
lowest lying mode has only a small stabilizing effect.

The total number of bound states is plotted in Fig. 8.5 as a func-
tion of the Higgs width wH . Bound states mainly emerge from a “hole”
in the Higgs condensate, since a region with |Φ| < |〈Φ〉| produces an at-
tractive potential for the fermions. Thus, it is expected that the num-
ber of bound states increases roughly quadratically with the width wH .
By contrast, the mixing angle ξ1 has only little effect, both on the to-
tal number of bound states and also on the number of tightly bound
states. The bound state contribution to the quantum energy (first term in
Eq. (8.50)),

EB =
1
2

∑
j

(mf − |ωj |) (8.61)

is shown in Fig. 8.6 as function of wH and ξ1. Again, EB increases roughly
quadratically with wH , while the dependence on the other variational parame-
ters is weaker. In the right panel, the dependence of EB on ξ1 is investigated.
Even though EB is large for some of the configurations near the Z-string
(ξ1 = π

2 ), the maximal values are still found for small ξ1. Since in addition
the classical energy grows dramatically with ξ1, it is unlikely to find stable
objects in the region of large ξ1.
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Fig. 8.5 The number of bound states as a function of the width wH of the
Higgs field at ξ1 = 0.1 × π/2 in specified energy ranges. The towers in each
entry come from variations of parameters (other than ξ1 and wH) that are not
displayed
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Fig. 8.6 The bound state contribution, EB, to the vacuum polarization energy
as a function of the variational parameters (a) wH and (b) ξ1. The towers in each
entry show the effect of variations in the other parameters. The ξ1-parameter space
has not been covered uniformly

The shooting algorithm might miss states when they come in degenerate
pairs. Such a degeneracy occurs for ξ1 = 0, for which the CP symmetry is
elevated to individual C and P symmetries. The point ξ1 ≡ 0 was therefore
avoided in the numerical studies of Ref. [38]. Similarly, very near-threshold
states may be missed. Since their number is given by Levinson’s theorem, the
resulting error can be estimated. Configurations were rejected for which this
error exceeded a prescribed limit.
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(c) Vacuum Polarization Energy
Results for the fermion determinant, Evac in Eq. (8.50), have been accu-

mulated for about 1000 sets of variational parameters [38]. Figure 8.7 shows
a selection thereof characterized by mf = 170GeV. Generically, the fermion
determinant gives a positive contribution to the quantum energy. Neverthe-
less there are some configurations for which Evac is negative; most notably for
moderate extensions of both the Higgs and the gauge fields: wH ∼ wG ∼ 3.
A charged Higgs condensate with ap �= 0 and wP ∼ 3 also has a beneficial
effect, while the dependence on the angle ξ1 is marginal.

The maximal energy gain from Evac is only of the order (−mf ). The low-
est value among the 1000 data points is Evac = −0.33mf at a very small
value for ξ1, i.e.,for an almost pure Higgs configuration. In total, the vacuum
polarization energy is insufficient to stabilize the string. This result is con-
firmed by the derivative expansion of the fermion determinant [23], which
agrees well with the exact calculation [38].

50 10 15

wH

0

5

10

Evac
(a)

50 10 15

wG

0

5

10

Evac
(c)

Fig. 8.7 The vacuum polarization energy, Evac, as a function of the width wH and
wG of the Higgs and gauge field, respectively. The towers in each entry show results
from variations of the remaining parameters

(d) Populating Bound States
Populating the Nf lowest lying states also defines an extended object of

extremal energy. According to Eq. (8.44), the binding energy of this object
is

B(Nf ) = Ecl +NC

[
E

(Nf )
occ + Evac

]
−NCNfmf

= Ecl +NC

Nf∑
j=1

(ωj −mf ) +NC Evac . (8.62)

Obviously B(Nf ) < 0 suggests the existence of an energetically stable object
with fermion number Nf NC . If there are fewer than Nf bound levels for
the configuration under consideration, we have to occupy scattering states at
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Fig. 8.8 The extremal (negative) binding energy, B(Nf ), as a function of the
number Nf of populated bound state levels

threshold, which do not contribute to the binding energy. Figure 8.8 shows the
maximal binding observed within the variational approach for a prescribed
number Nf . Bound objects exist for sufficiently large NC ; e.g., NC ≥ 8 yields
a bound object with Nf > 20.

Figure 8.9 shows the binding energy Eq. (8.62) for fixed values of NC and
Nf , as a function of the width wH . Again, bound objects with B(Nf ) < 0 ex-
ist for sufficiently large NC . This binding mechanism requires us to populate
up to Nf ∼ 50 levels.

The additional charged Higgs condensate with amplitude aP in Eq. (8.35)
is novel in the context of strings in the standard model. Since the fermion zero
mode on the Z-string exists only for aP = 0 and furthermore aP > 0 increases
the effective fermion mass, minimizing EB favors aP → 0. On the other hand
the fermion determinant decreases with increasing aP and may even become
negative at large aP . Hence for a moderate number Nf of occupied bound
states, this may balance the smaller bound state contribution. But in this
case Nf is too small to overcome the classical energy. In the parameter regime
where we detect stable strings, Nf is so large that aP → 0 is favorable.
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Fig. 8.9 The binding energy as a function of the width wH for two values of the
degeneracy NC
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(e) Large Fermion Mass
Finally, we consider the case of a very heavy fermion, for which decoupling

arguments [33, 34] suggest the existence of a stable soliton. A large fermion
mass arises from a drastically increased Yukawa coupling f , which tends to
enhance the stabilizing effect of the fermion fluctuations. At the same time,
it decreases the d = 2+1 VEV of the Higgs according to Eq. (8.39), thereby
reducing the classical energy.

Figure 8.10 shows the resulting binding energy for the choice mf =
1.5TeV. As expected, there is a stable object for the physical value of NC = 3
and a large number of populated fermion levels. We also check if a fermion
number zero object (Nf = 0) acquires binding, meaning that the vacuum
would be unstable against the formation of weak strings. The left panel of
Fig. 8.10 shows that for NC = 3 and mf = 1.5 TeV, there is only negligible
binding for Nf = 0. For the physical value mf = 170GeV, we do not see any
significant binding unless the number of colors is increased to NC ∼ 100.
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Fig. 8.10 The binding energy as a function of the Higgs field width, wH , for a large
fermion mass, mf = 1.5 TeV, and two values of the number of populated levels
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9 Quantum Corrections to Q-Balls

So far we have focused on static field configurations. In this chapter we show
how our methods can be extended to systems with simple time dependence.

9.1 The Q-Ball

A complex scalar theory in three dimensions with a cubic coupling can sup-
port classically stable, time-dependent, non-topological solutions to the equa-
tions of motion that carry a global charge Q, called Q-balls [1]. Supersym-
metric extensions of the standard model generically contain such objects [2].
They become particularly interesting in cosmological applications at small
values of Q, because then it is easier for them to form in the early universe
[3]. In this regime, quantum corrections to the soliton’s energy become in-
creasingly important in determining its stability. In this chapter, we extend
our methods to Q-balls. We show how to express the calculation in terms of
an effective time-independent problem. In this formalism, the full one-loop
quantum correction can be computed efficiently. We also derive a very simple
estimate for this result. This calculation enables us to compare the energy of
the Q-ball in the quantum theory to the energy of free particles carrying the
same charge Q and determine if the Q-ball remains stable in the quantum
theory.

Our starting point is the classical analysis of Q-balls carried out in
Refs. [1, 3]. We will take the same simple model,

L =
1
2
(∂μϕ)∗(∂μϕ)− U(ϕ), (9.1)

where ϕ is a complex field, and choose the potential

U(ϕ) =
1
2
M2|ϕ|2 −A|ϕ|3 + λ|ϕ|4 , (9.2)

so that ϕ = 0 is a minimum of the potential and the global U(1) symmetry
is unbroken. A particular configuration ϕ(x, t) has charge

Q =
1
2i

∫
d3x (ϕ∗∂tϕ− ϕ∂tϕ

∗) . (9.3)
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172 9 Quantum Corrections to Q-Balls

With these conventions, an asymptotic state with momentum k has unit
charge.

To restrict to configurations of fixed charge Q, we introduce a Lagrange
multiplier χ, so that the energy functional becomes

Eχ[ϕ] =
∫
d3x

1
2
|∂tϕ− iχϕ|2 +

∫
d3x

(
1
2
|∇ϕ|2 + Uχ(ϕ)

)
+ χQ , (9.4)

where
Uχ(ϕ) = U(ϕ)− 1

2
χ2|ϕ|2 . (9.5)

Then minimizing the energy over χ fixes the configuration to have charge Q,
and the classical Q-ball solution is obtained by minimizing the energy with
respect to independent variations of ϕ(x, t) and χ. The form of the kinetic
energy ensures that the Q-ball solution has the simple time dependence

ϕ(x, t) = eiχtφ(x), (9.6)

and we must simply minimize

Eχ[φ] =
∫
d3x

(
1
2
|∇φ|2 + Uχ(φ)

)
+ χQ (9.7)

by varying χ and φ(x). As shown in Ref. [1], if the quantity U(φ)/φ2 is
minimized at φ0 > 0, then for χ0 =

√
2U(φ0)/φ2

0, the effective potential
Uχ0(φ) will have degenerate minima. For χ > χ0, we can find a spherically
symmetric solution to the equations of motion,

d2

dr2
φ0(r) +

2
r

d

dr
φ0(r) = U ′

χ(φ0(r)) , (9.8)

where a prime labels the derivative with respect to the argument. This so-
lution is the “bounce” for tunneling in three Euclidean dimensions [4]. Here
the boundary conditions are

lim
r→∞φ0(r) = 0 and

d

dr
φ0(r)

∣∣∣∣
r=0

= 0 . (9.9)

We can find the solution using the shooting method detailed in Ref. [4] and
minimize the resulting energy over χ to ensure that ϕ carries charge Q. For
large enough Q, the optimal value of χ approaches χ0, allowing Ref. [1] to use
the thin-wall approximation in order to demonstrate the existence of a global
minimum, which is the Q-ball solution. For small Q, the optimal value of χ
approaches M , and Ref. [3] uses the thick-wall approximation to show that
there exists a global minimum in this case as well. Thus classically bound
solitons exist all the way down to Q = 1. For all Q, we have χ0 < χ < M . We
can thus consider the classical binding energy as a function ofQ by comparing
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the energy of the Q-ball to QM , the energy of a collection of free particles
carrying charge Q, since it is a conserved quantity.

Although Q-balls are classically stable even as Q→ 1, the binding energy
per charge is going to zero in this limit. This case is of particular interest for
cosmological applications, since Q-balls of large charge, while favored ener-
getically, are disfavored as the temperature increases by their low entropy.
To answer the question of whether Q-balls have a significant chance of be-
ing formed in the early universe, we must therefore verify that the classical
conclusions are not invalidated by quantum corrections.

9.2 Quantum Corrections

To compute the leading quantum correction to the Q-ball energy, we write
the quantum field ϕ as the classical solution plus a quantum correction,

ϕ(x, t) = eiχtφ0(r) + η(x, t). (9.10)

We expand the field equations in the small fluctuations η(x, t). The O(�)
information is contained in the leading (harmonic) order, which reads

[
(∂t + iχ)2 −∇2 + U ′′(φ0(x))

]
η(x, t) = 0 . (9.11)

Parameterizing η(x, t) = eiχte−iωtψ(x) gives the mode an energy ω−χ, where
the time-independent wavefunction ψ(x) solves

[
−∇2 + U ′′(φ0(x))

]
ψ(x) = ω2ψ(x) , (9.12)

which is an ordinary Schrödinger equation. The unrenormalized (bare) vac-
uum polarization energy is given formally by the sum over zero-point energies
of these oscillations

Ebare
vac [φ0] ∼

1
2

∑
j

|ωj − χ| . (9.13)

Since the spectrum of Eq. (9.12) is symmetric in ω → −ω, we can sum over
both signs of the energy and obtain the formal expression

Ebare
vac [φ0] ∼

1
2

∑
ωj≥0

(|ωj + χ|+ |ωj − χ|) =
∑
ωj≥0

max (|χ|, |ωj |) . (9.14)

We will use the spectral method to extract the quantum correction to the
energy in terms of the continuum scattering data for the reduced problem of
Eq. (9.12). Since the potential is spherically symmetric, we can decompose
the spectrum into partial waves �. We have wavefunctions

ψ(x) =
∑
l,m

Y�m(x̂)
r

ψ�(r) (9.15)
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for m = −�,−�+ 1, . . . , �− 1, �, where the radial wavefunction ψ�(r) satisfies
(
− d2

dr2
+
�(�+ 1)
r2

+ U ′′(φ0(r))
)
ψ�(r) = ω2ψ�(r) (9.16)

with scattering boundary conditions.
In each partial wave, we will find a continuum starting at ω = M and

possibly bound states with 0 ≤ ωj ≤ M . It is instructive to consider the
properties of Eq. (9.12) that reveal its origin from a field theory soliton. The
full oscillation spectrum should have a zero mode in the � = 1 channel, cor-
responding to the translation invariance of the Q-ball solution. The threefold
degeneracy of this state corresponds to the three directions of translation.
From Eq. (9.13), we see that in the reduced problem, the zero mode appears
as a bound state with energy ω = χ. Since this state appears in the � = 1
channel, there must exist an even more tightly bound state in the � = 0 chan-
nel. In the case of an ordinary static solution, this state would correspond
to an instability of the full soliton. (This result is simply another form of
Derrick’s theorem [5], which prohibits the existence of scalar solitons in more
than one space dimension.) But from Eq. (9.14), we see that the destabiliz-
ing effect of this mode is neutralized by the time dependence of the classical
solution. Thus the � = 0 bound state makes the same contribution to the vac-
uum polarization energy as the zero modes do. All other modes have energies
greater than χ.

Having rewritten the vacuum polarization energy in terms of the eigen-
modes of the reduced scattering problem in Eqs. (9.12) and (9.16), we are
prepared to apply the spectral methods we have developed earlier. As be-
fore, we obtain the renormalized vacuum polarization energy as Feynman
diagram contribution together with a sum over partial waves � in which each
term consists of a sum over positive-energy bound states ωj,� and an integral
over continuum states. We thus obtain the renormalized vacuum polarization
energy

Evac[φ0] =
∞∑

�=0

(2�+ 1)

⎡
⎣∫ ∞

0

dk

π
ω
d

dk

(
δ�(k)− δ(1)� (k)− δ(2)� (k)

)

+
∑

j

max(χ, ωj,�)

⎤
⎦+ Eren

FD [φ0] , (9.17)

where k =
√
ω2 −M2, δ�(k) is the scattering phase shift in partial wave �,

and δ(1)� (k) and δ(2)� (k) are its first and second Born approximations, respec-
tively. Finally Eren

FD =
∑2

i=1E
(i)
FD + ECT is the contribution to the energy

from the two-point function, computed in ordinary Feynman perturbation
theory, cf.Eq. (3.27). This piece includes the counterterms, which we fix us-
ing physical renormalization conditions: We demand that the tadpole graph
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vanish,1 and that the mass of the free ϕ particle, i.e.,the pole of the ϕ-
propagator, is unchanged. We also perform wavefunction renormalization so
that the residue of this pole is unchanged as well.

The contribution to the energy from the two-point function is computed
using conventional techniques, giving

Eren
FD [φ0] =

∫ ∞

0

4q2dq
(4π)4

⎡
⎣
(

2

√
q2 + 4M2

q
arctanh

q√
q2 + 4M2

− 5π
3
√

3
+1

)
|σ̃(q)|2 −4q2

(
2π

3
√

3
− 1
)
|φ̃(q)|2

⎤
⎦,(9.18)

where σ̃(q) and φ̃(q) are the � = 0 Fourier transforms of U ′′(φ0(r))−M2 and
φ(r), respectively.

Examining this calculation in detail yields an accurate estimate for the
quantum correction to the energy that is easy to compute. Using the analysis
of bound states above, we can separate Eq. (9.17) into

Evac[φ0] =
∞∑

�=0

(2�+ 1)

⎡
⎣∫ ∞

0

dk

π
ω
d

dk

(
δ�(k)− δ(1)� (k)− δ(2)� (k)

)
+
∑

j

ωj,�

⎤
⎦

+χ− ω0 + Eren
FD [φ0], (9.19)

where ω0 is energy of the most tightly bound state, which appears in the
� = 0 channel. (It is the only state with energy less than χ.) To set up the
approximation it is instructive to define the reduced vacuum polarization
energy as the quantum energy without the most tightly bound state,

Ered
vac[φ0] = Evac[φ0]− (χ− ω0)

=
∞∑

�=0

(2�+ 1)

⎡
⎣∫ ∞

0

dk

π
(ω −M)

d

dk

(
δ�(k)− δ(1)� (k)− δ(2)� (k)

)

+
∑

j

(ωj,� −M)

⎤
⎦+ Eren

FD [φ0], (9.20)

where we have used Levinson’s theorem in the second equation. We claim that
the contribution from Eq. (9.20) is small: Since χ does not appear explicitly,
Eq. (9.20) is simply the vacuum polarization energy of a time-independent
soliton giving rise to the reduced small oscillations of Eq. (9.12). (Of course,
such a soliton would not solve the field theory equations of motion, but we
could imagine holding it in place with an external source). The potential
U ′′(φ0(x)) is shallow and slowly varying, especially in the limit of small Q,
which corresponds to χ approaching M . It causes only a slight deformation of
1 As in the scalar theories discussed in previous chapters, the tadpole graph is

local. Thus the first-order Feynman diagram is fully canceled.
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the small oscillations spectrum—in particular, there is only one state bound
more tightly than χ. For a generic potential of this kind, the contributions
from the bound states and continuum will be opposite in sign, since any
rearrangement of the continuum spectrum partially compensates for the effect
of the states that become bound.

Alternatively, we can also estimate Eq. (9.20) in the derivative expansion.
To lowest order, we have simply the effective potential contribution [4]

Ered,DE
vac [φ0] =

∫ ∞

0

r2dr

8π
M4

(
(1 + z(r))2 log(1 + z(r))− z(r)− 3

2
z(r)2

)
,

(9.21)
where we have introduced the radial function

z(r) =
U ′′(φ0(r))−M2

M2
. (9.22)

Using either this technique or explicit computations, we find that the
reduced vacuum polarization energy is indeed very small compared to the
classical binding energy of the Q-ball (typically 5% or less for small Q). Thus
we lose very little accuracy by dropping this term, which results in a very
simple estimate for the vacuum polarization energy:

Evac[φ0] ≈ Eest
vac[φ0] = χ− ω0 . (9.23)

9.3 Applications

To see whether the Q-ball is stable, we must compare its energy to the energy
of a state with the same charge built on the trivial vacuum

B[φ0] = E[φ0]−QM . (9.24)

Figure 9.1 shows the result of different calculations of E, each as a function
of Q, for two choices of the coupling constants. In both cases, the parameters
are chosen so that ϕ = 0 remains the global minimum of U(ϕ). We work in
units ofM , which sets the scale of the problem. In the classical approximation,

Bclass[φ0] = Eχ[φ0]−QM, (9.25)

we see the result of [3]: The Q-ball is stable for all Q, though the binding
energy per charge is going to zero as Q→ 0. In the full one-loop calculation,

Bfull[φ0] = Eχ[φ0] +Evac[φ0]−QM, (9.26)

we see that the quantum corrections overwhelm the weak classical binding
up to Qmin ≈ 7. Above this value, the Q-ball remains stable. The spherically
symmetric Q-ball is unbound below Qmin, though we cannot exclude stable
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Fig. 9.1 Q-ball binding as a function of Q, in units of M . Parameters are A =
0.325M and λ = 0.055 (left panel), and A = 0.425M and λ = 0.095 (right panel).
Shown are three calculations of the difference B between the energy of a Q-ball
and the energy of a state with charge Q built on the trivial vacuum: the classical
approximation Bclass[φ0], the full one-loop calculation Bfull[φ0], and the estimated
one-loop result Best[φ0]

configurations outside the spherically symmetric ansatz, Eq. (9.6). Finally,
we see that using Eq. (9.23) to approximate to the one-loop result gives an
expression

Best[φ0] = Eχ[φ0] + Eest
vac[φ0]−QM (9.27)

that is very close to the full one-loop result. It is also interesting to note
that this approximation is particularly good near the value of Q at which the
Q-ball becomes bound in the full one-loop calculation.
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